TogetherAI commited on
Commit
ef45b2f
1 Parent(s): 80d9bfc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -75
app.py CHANGED
@@ -1,5 +1,3 @@
1
- import torch
2
-
3
  import gradio as gr
4
  import yt_dlp as youtube_dl
5
  from transformers import pipeline
@@ -7,6 +5,7 @@ from transformers.pipelines.audio_utils import ffmpeg_read
7
 
8
  import tempfile
9
  import os
 
10
 
11
  MODEL_NAME = "openai/whisper-large-v3"
12
  BATCH_SIZE = 8
@@ -22,7 +21,6 @@ pipe = pipeline(
22
  device=device,
23
  )
24
 
25
-
26
  def transcribe(inputs, task):
27
  if inputs is None:
28
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
@@ -30,66 +28,16 @@ def transcribe(inputs, task):
30
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
31
  return text
32
 
 
33
 
34
- def _return_yt_html_embed(yt_url):
35
- video_id = yt_url.split("?v=")[-1]
36
- HTML_str = (
37
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
38
- " </center>"
39
- )
40
- return HTML_str
41
-
42
- def download_yt_audio(yt_url, filename):
43
- info_loader = youtube_dl.YoutubeDL()
44
-
45
- try:
46
- info = info_loader.extract_info(yt_url, download=False)
47
- except youtube_dl.utils.DownloadError as err:
48
- raise gr.Error(str(err))
49
-
50
- file_length = info["duration_string"]
51
- file_h_m_s = file_length.split(":")
52
- file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
53
-
54
- if len(file_h_m_s) == 1:
55
- file_h_m_s.insert(0, 0)
56
- if len(file_h_m_s) == 2:
57
- file_h_m_s.insert(0, 0)
58
- file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
59
-
60
- if file_length_s > YT_LENGTH_LIMIT_S:
61
- yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
62
- file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
63
- raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
64
-
65
- ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
66
-
67
- with youtube_dl.YoutubeDL(ydl_opts) as ydl:
68
- try:
69
- ydl.download([yt_url])
70
- except youtube_dl.utils.ExtractorError as err:
71
- raise gr.Error(str(err))
72
-
73
-
74
- def yt_transcribe(yt_url, task, max_filesize=75.0):
75
- html_embed_str = _return_yt_html_embed(yt_url)
76
-
77
- with tempfile.TemporaryDirectory() as tmpdirname:
78
- filepath = os.path.join(tmpdirname, "video.mp4")
79
- download_yt_audio(yt_url, filepath)
80
- with open(filepath, "rb") as f:
81
- inputs = f.read()
82
-
83
- inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
84
- inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
85
-
86
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
87
-
88
- return html_embed_str, text
89
-
90
-
91
  demo = gr.Blocks(theme="TogetherAi/Alex2")
92
 
 
 
 
 
 
93
  mf_transcribe = gr.Interface(
94
  fn=transcribe,
95
  inputs=[
@@ -97,17 +45,15 @@ mf_transcribe = gr.Interface(
97
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
98
  ],
99
  outputs="text",
100
- layout="horizontal",
101
- theme="TogetherAi/Alex2",
102
- title="Whisper Large V3: Audio transkribieren",
103
- description=(
104
- "Transkribiere lange Mikrofon- oder Audioeingaben mit einem Klick! Die Demo verwendet den"
105
- f" Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) und 🤗 Transformers, um Audiodateien"
106
- " beliebiger Länge zu transkribieren."
107
- ),
108
- allow_flagging="never",
109
-
110
-
111
  )
112
 
113
  file_transcribe = gr.Interface(
@@ -121,9 +67,9 @@ file_transcribe = gr.Interface(
121
  theme="TogetherAi/Alex2",
122
  title="Whisper Large V3: Transcribe Audio",
123
  description=(
124
- "Transkribiere lange Mikrofon- oder Audioeingaben mit einem Klick! Die Demo verwendet den"
125
- f" Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) und 🤗 Transformers, um Audiodateien"
126
- " beliebiger Länge zu transkribieren."
127
  ),
128
  allow_flagging="never",
129
  )
@@ -132,7 +78,7 @@ yt_transcribe = gr.Interface(
132
  fn=yt_transcribe,
133
  inputs=[
134
  gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
135
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
136
  ],
137
  outputs=["html", "text"],
138
  layout="horizontal",
@@ -146,7 +92,10 @@ yt_transcribe = gr.Interface(
146
  allow_flagging="never",
147
  )
148
 
 
149
  with demo:
150
  gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
151
 
 
152
  demo.launch(enable_queue=True)
 
 
 
 
1
  import gradio as gr
2
  import yt_dlp as youtube_dl
3
  from transformers import pipeline
 
5
 
6
  import tempfile
7
  import os
8
+ import time # Hinzugefügtes Modul für die Zeitberechnung
9
 
10
  MODEL_NAME = "openai/whisper-large-v3"
11
  BATCH_SIZE = 8
 
21
  device=device,
22
  )
23
 
 
24
  def transcribe(inputs, task):
25
  if inputs is None:
26
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
 
28
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
29
  return text
30
 
31
+ # ... (Fortsetzung des Codes für die Funktionen _return_yt_html_embed, download_yt_audio, yt_transcribe, etc.)
32
 
33
+ # Schritt 1: Definiere das gr.Blocks-Element für das Layout der Demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  demo = gr.Blocks(theme="TogetherAi/Alex2")
35
 
36
+ # Schritt 2: Ändere das Layout für das Blockelement auf "centered" und setze die Breite auf 500 Pixel
37
+ demo.layout = "centered" # Layout auf "centered" ändern
38
+ demo.width = 500 # Breite auf 500 setzen
39
+
40
+ # Schritt 3: Erstelle die Schnittstellen wie zuvor für Audioaufnahmen, das Hochladen von Audiodateien und das Transkribieren von YouTube-Videos
41
  mf_transcribe = gr.Interface(
42
  fn=transcribe,
43
  inputs=[
 
45
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
46
  ],
47
  outputs="text",
48
+ layout="horizontal",
49
+ theme="TogetherAi/Alex2",
50
+ title="Whisper Large V3: Audio transkribieren",
51
+ description=(
52
+ "Transkribiere lange Mikrofon- oder Audioeingaben mit einem Klick! Die Demo verwendet den"
53
+ f" Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) und 🤗 Transformers, um Audiodateien"
54
+ " beliebiger Länge zu transkribieren."
55
+ ),
56
+ allow_flagging="never",
 
 
57
  )
58
 
59
  file_transcribe = gr.Interface(
 
67
  theme="TogetherAi/Alex2",
68
  title="Whisper Large V3: Transcribe Audio",
69
  description=(
70
+ "Transkribiere lange Mikrofon- oder Audioeingaben mit einem Klick! Die Demo verwendet den"
71
+ f" Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) und 🤗 Transformers, um Audiodateien"
72
+ " beliebiger Länge zu transkribieren."
73
  ),
74
  allow_flagging="never",
75
  )
 
78
  fn=yt_transcribe,
79
  inputs=[
80
  gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
81
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
82
  ],
83
  outputs=["html", "text"],
84
  layout="horizontal",
 
92
  allow_flagging="never",
93
  )
94
 
95
+ # Schritt 4: Erstelle eine TabbedInterface, um die verschiedenen Schnittstellen für Mikrofon, Hochladen von Audiodateien und YouTube-Transkription anzuzeigen
96
  with demo:
97
  gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
98
 
99
+ # Schritt 5: Starte die Demo
100
  demo.launch(enable_queue=True)
101
+