Spaces:
Build error
Build error
CallmeKaito
commited on
Commit
•
10d1571
1
Parent(s):
27c4528
Delete LLaVa.py
Browse files
LLaVa.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# # Set-up environment
|
5 |
-
|
6 |
-
# In[2]:
|
7 |
-
|
8 |
-
|
9 |
-
get_ipython().system('pip install --upgrade -q accelerate bitsandbytes')
|
10 |
-
|
11 |
-
|
12 |
-
# In[ ]:
|
13 |
-
|
14 |
-
|
15 |
-
get_ipython().system('rm -r transformers')
|
16 |
-
get_ipython().system('git clone -b llava_improvements https://github.com/NielsRogge/transformers.git')
|
17 |
-
get_ipython().system('cd transformers')
|
18 |
-
get_ipython().system('pip install -q ./transformers')
|
19 |
-
|
20 |
-
|
21 |
-
# In[ ]:
|
22 |
-
|
23 |
-
|
24 |
-
get_ipython().system('pip install git+https://github.com/huggingface/transformers.git')
|
25 |
-
|
26 |
-
|
27 |
-
# ## Load model and processor
|
28 |
-
|
29 |
-
# In[ ]:
|
30 |
-
|
31 |
-
|
32 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
33 |
-
from transformers import BitsAndBytesConfig
|
34 |
-
import torch
|
35 |
-
|
36 |
-
quantization_config = BitsAndBytesConfig(
|
37 |
-
load_in_4bit=True,
|
38 |
-
bnb_4bit_compute_dtype=torch.float16
|
39 |
-
)
|
40 |
-
|
41 |
-
|
42 |
-
model_id = "llava-hf/llava-1.5-7b-hf"
|
43 |
-
|
44 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
45 |
-
model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, device_map="auto")
|
46 |
-
|
47 |
-
|
48 |
-
# ## Prepare image and text for the model
|
49 |
-
|
50 |
-
# In[ ]:
|
51 |
-
|
52 |
-
|
53 |
-
import requests
|
54 |
-
from PIL import Image
|
55 |
-
|
56 |
-
image1 = Image.open('data/clock.jpeg')
|
57 |
-
display(image1)
|
58 |
-
|
59 |
-
|
60 |
-
# In the prompt, you can refer to images using the special \<image> token. To indicate which text comes from a human vs. the model, one uses USER and ASSISTANT respectively. The format looks as follows:
|
61 |
-
#
|
62 |
-
# ```bash
|
63 |
-
# USER: <image>\n<prompt>\nASSISTANT:
|
64 |
-
# ```
|
65 |
-
|
66 |
-
# In other words, you always need to end your prompt with `ASSISTANT:`. Here we will perform batched generation (i.e generating on several prompts).
|
67 |
-
|
68 |
-
# In[ ]:
|
69 |
-
|
70 |
-
|
71 |
-
caption = 'an old fashioned clock sitting on top of a table'
|
72 |
-
|
73 |
-
user_input = "This is an intricately crafted old-fashioned clock created by a skilled Moroccan artisan back in 1988 from Chefchaoune.. it reminds me of my mother."
|
74 |
-
|
75 |
-
prompts = [
|
76 |
-
f"USER: <image>\nBased on the caption '{caption}' and the following user input: '{user_input}', generate a detailed product name and description for this Moroccan artisanal item; the description should be minimal yet it gives the essence of the product and convinces people to buy or express their interest in it.\nASSISTANT:"
|
77 |
-
# f"""
|
78 |
-
# USER: <image>\nBased on the image caption '{caption}' and the following background information: '{user_input}', generate an attention-grabbing yet concise product name and description for this authentic Moroccan artisanal item. The description should:
|
79 |
-
# Highlight the key features and unique selling points that make this product exceptional and desirable.
|
80 |
-
# Convey the cultural significance, craftsmanship, and rich heritage behind the item's creation.
|
81 |
-
# Use evocative language that resonates with potential buyers and piques their interest in owning this one-of-a-kind piece.
|
82 |
-
# Be concise, direct, and persuasive, leaving the reader eager to learn more or acquire the product.
|
83 |
-
|
84 |
-
# Your response should follow this format:
|
85 |
-
# Product Name: [Compelling and relevant product name]
|
86 |
-
# Product Description: [Concise yet captivating description addressing the points above]
|
87 |
-
# ASSISTANT:"""
|
88 |
-
|
89 |
-
]
|
90 |
-
|
91 |
-
inputs = processor(prompts, images=[image1], padding=True, return_tensors="pt").to("cuda")
|
92 |
-
for k,v in inputs.items():
|
93 |
-
print(k,v.shape)
|
94 |
-
|
95 |
-
|
96 |
-
# ## Autoregressively generate completion
|
97 |
-
#
|
98 |
-
# Finally, we simply let the model predict the next tokens given the images + prompt. Of course one can adjust all the [generation parameters](https://huggingface.co/docs/transformers/v4.35.2/en/main_classes/text_generation#transformers.GenerationMixin.generate). By default, greedy decoding is used.
|
99 |
-
|
100 |
-
# In[ ]:
|
101 |
-
|
102 |
-
|
103 |
-
output = model.generate(**inputs, max_new_tokens=200)
|
104 |
-
generated_text = processor.batch_decode(output, skip_special_tokens=True)
|
105 |
-
for text in generated_text:
|
106 |
-
print(text.split("ASSISTANT:")[-1])
|
107 |
-
|
108 |
-
|
109 |
-
# ## Pipeline API
|
110 |
-
#
|
111 |
-
# Alternatively, you can leverage the [pipeline](https://huggingface.co/docs/transformers/main_classes/pipelines) API which abstracts all of the logic above away for the user. We also provide the quantization config to make sure we leverage 4-bit inference.
|
112 |
-
|
113 |
-
# In[ ]:
|
114 |
-
|
115 |
-
|
116 |
-
from transformers import pipeline
|
117 |
-
|
118 |
-
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
|
119 |
-
|
120 |
-
|
121 |
-
# In[ ]:
|
122 |
-
|
123 |
-
|
124 |
-
max_new_tokens = 200
|
125 |
-
prompt = "USER: <image>\nWhat are the things I should be cautious about when I visit this place?\nASSISTANT:"
|
126 |
-
|
127 |
-
outputs = pipe(image1, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
128 |
-
|
129 |
-
|
130 |
-
# In[ ]:
|
131 |
-
|
132 |
-
|
133 |
-
print(outputs[0]["generated_text"])
|
134 |
-
|
135 |
-
|
136 |
-
# In[ ]:
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|