Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as nnf | |
from torch import nn | |
import random | |
from transformers import AutoModelForCausalLM | |
from MeshAnything.miche.encode import load_model | |
from MeshAnything.models.shape_opt import ShapeOPTConfig | |
from einops import repeat, reduce, rearrange, pack, unpack | |
class MeshAnythingV2(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.point_encoder = load_model(ckpt_path=None) | |
self.n_discrete_size = 128 | |
self.max_seq_ratio = 0.70 | |
self.face_per_token = 9 | |
self.cond_length = 257 | |
self.cond_dim = 768 | |
self.pad_id = -1 | |
self.n_max_triangles = 1600 | |
self.max_length = int(self.n_max_triangles * self.face_per_token * self.max_seq_ratio + 3 + self.cond_length) # add 1 | |
self.coor_continuous_range = (-0.5, 0.5) | |
self.config = ShapeOPTConfig.from_pretrained( | |
"facebook/opt-350m", | |
n_positions=self.max_length, | |
max_position_embeddings=self.max_length, | |
vocab_size=self.n_discrete_size + 4, | |
_attn_implementation="flash_attention_2" | |
) | |
self.bos_token_id = 0 | |
self.eos_token_id = 1 | |
self.pad_token_id = 2 | |
self.config.bos_token_id = self.bos_token_id | |
self.config.eos_token_id = self.eos_token_id | |
self.config.pad_token_id = self.pad_token_id | |
self.config._attn_implementation="flash_attention_2" | |
self.config.n_discrete_size = self.n_discrete_size | |
self.config.face_per_token = self.face_per_token | |
self.config.cond_length = self.cond_length | |
if self.config.word_embed_proj_dim != self.config.hidden_size: | |
self.config.word_embed_proj_dim = self.config.hidden_size | |
self.transformer = AutoModelForCausalLM.from_config( | |
config=self.config, use_flash_attention_2 = True | |
) | |
self.transformer.to_bettertransformer() | |
self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim) | |
self.cond_proj = nn.Linear(self.cond_dim * 2, self.config.word_embed_proj_dim) | |
self.eval() | |
def adjacent_detokenize(self, input_ids): | |
input_ids = input_ids.reshape(input_ids.shape[0], -1) # B x L | |
batch_size = input_ids.shape[0] | |
continuous_coors = torch.zeros((batch_size, self.n_max_triangles * 3 * 10, 3), device=input_ids.device) | |
continuous_coors[...] = float('nan') | |
for i in range(batch_size): | |
cur_ids = input_ids[i] | |
coor_loop_check = 0 | |
vertice_count = 0 | |
continuous_coors[i, :3, :] = torch.tensor([[-0.1, 0.0, 0.1], [-0.1, 0.1, 0.2], [-0.3, 0.3, 0.2]], | |
device=input_ids.device) | |
for id in cur_ids: | |
if id == self.pad_id: | |
break | |
elif id == self.n_discrete_size: | |
if coor_loop_check < 9: | |
break | |
if coor_loop_check % 3 !=0: | |
break | |
coor_loop_check = 0 | |
else: | |
if coor_loop_check % 3 == 0 and coor_loop_check >= 9: | |
continuous_coors[i, vertice_count] = continuous_coors[i, vertice_count-2] | |
continuous_coors[i, vertice_count+1] = continuous_coors[i, vertice_count-1] | |
vertice_count += 2 | |
continuous_coors[i, vertice_count, coor_loop_check % 3] = undiscretize(id, self.coor_continuous_range[0], self.coor_continuous_range[1], self.n_discrete_size) | |
if coor_loop_check % 3 == 2: | |
vertice_count += 1 | |
coor_loop_check += 1 | |
continuous_coors = rearrange(continuous_coors, 'b (nf nv) c -> b nf nv c', nv=3, c=3) | |
return continuous_coors # b, nf, 3, 3 | |
def forward(self, data_dict: dict, is_eval: bool = False) -> dict: | |
if not is_eval: | |
return self.train_one_step(data_dict) | |
else: | |
return self.generate(data_dict) | |
def process_point_feature(self, point_feature): | |
encode_feature = torch.zeros(point_feature.shape[0], self.cond_length, self.config.word_embed_proj_dim, | |
device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype) | |
encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0]) | |
shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:]) | |
encode_feature[:, 1:] = self.cond_proj(torch.cat([point_feature[:, 1:], shape_latents], dim=-1)) | |
return encode_feature | |
def forward(self, pc_normal, sampling=False) -> dict: | |
batch_size = pc_normal.shape[0] | |
point_feature = self.point_encoder.encode_latents(pc_normal) | |
processed_point_feature = self.process_point_feature(point_feature) | |
generate_length = self.max_length - self.cond_length | |
net_device = next(self.parameters()).device | |
outputs = torch.ones(batch_size, generate_length).long().to(net_device) * self.eos_token_id | |
# batch x ntokens | |
if not sampling: | |
results = self.transformer.generate( | |
inputs_embeds=processed_point_feature, | |
max_new_tokens=generate_length, # all faces plus two | |
num_beams=1, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
) | |
else: | |
results = self.transformer.generate( | |
inputs_embeds = processed_point_feature, | |
max_new_tokens = generate_length, # all faces plus two | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
bos_token_id = self.bos_token_id, | |
eos_token_id = self.eos_token_id, | |
pad_token_id = self.pad_token_id, | |
) | |
assert results.shape[1] <= generate_length # B x ID bos is not included since it's predicted | |
outputs[:, :results.shape[1]] = results | |
# batch x ntokens ====> batch x ntokens x D | |
outputs = outputs[:, 1: -1] | |
outputs[outputs == self.bos_token_id] = self.pad_id | |
outputs[outputs == self.eos_token_id] = self.pad_id | |
outputs[outputs == self.pad_token_id] = self.pad_id | |
outputs[outputs != self.pad_id] -= 3 | |
gen_mesh = self.adjacent_detokenize(outputs) | |
return gen_mesh | |
def undiscretize( | |
t, | |
low,#-0.5 | |
high,# 0.5 | |
num_discrete | |
): | |
t = t.float() #[0, num_discrete-1] | |
t /= num_discrete # 0<=t<1 | |
t = t * (high - low) + low # -0.5 <= t < 0.5 | |
return t | |