Roblox-test / MeshAnything /models /meshanything_v2.py
ThomasSimonini's picture
Upload 50 files
1e78183 verified
raw
history blame
6.91 kB
import torch
import torch.nn.functional as nnf
from torch import nn
import random
from transformers import AutoModelForCausalLM
from MeshAnything.miche.encode import load_model
from MeshAnything.models.shape_opt import ShapeOPTConfig
from einops import repeat, reduce, rearrange, pack, unpack
class MeshAnythingV2(nn.Module):
def __init__(self):
super().__init__()
self.point_encoder = load_model(ckpt_path=None)
self.n_discrete_size = 128
self.max_seq_ratio = 0.70
self.face_per_token = 9
self.cond_length = 257
self.cond_dim = 768
self.pad_id = -1
self.n_max_triangles = 1600
self.max_length = int(self.n_max_triangles * self.face_per_token * self.max_seq_ratio + 3 + self.cond_length) # add 1
self.coor_continuous_range = (-0.5, 0.5)
self.config = ShapeOPTConfig.from_pretrained(
"facebook/opt-350m",
n_positions=self.max_length,
max_position_embeddings=self.max_length,
vocab_size=self.n_discrete_size + 4,
_attn_implementation="flash_attention_2"
)
self.bos_token_id = 0
self.eos_token_id = 1
self.pad_token_id = 2
self.config.bos_token_id = self.bos_token_id
self.config.eos_token_id = self.eos_token_id
self.config.pad_token_id = self.pad_token_id
self.config._attn_implementation="flash_attention_2"
self.config.n_discrete_size = self.n_discrete_size
self.config.face_per_token = self.face_per_token
self.config.cond_length = self.cond_length
if self.config.word_embed_proj_dim != self.config.hidden_size:
self.config.word_embed_proj_dim = self.config.hidden_size
self.transformer = AutoModelForCausalLM.from_config(
config=self.config, use_flash_attention_2 = True
)
self.transformer.to_bettertransformer()
self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)
self.cond_proj = nn.Linear(self.cond_dim * 2, self.config.word_embed_proj_dim)
self.eval()
def adjacent_detokenize(self, input_ids):
input_ids = input_ids.reshape(input_ids.shape[0], -1) # B x L
batch_size = input_ids.shape[0]
continuous_coors = torch.zeros((batch_size, self.n_max_triangles * 3 * 10, 3), device=input_ids.device)
continuous_coors[...] = float('nan')
for i in range(batch_size):
cur_ids = input_ids[i]
coor_loop_check = 0
vertice_count = 0
continuous_coors[i, :3, :] = torch.tensor([[-0.1, 0.0, 0.1], [-0.1, 0.1, 0.2], [-0.3, 0.3, 0.2]],
device=input_ids.device)
for id in cur_ids:
if id == self.pad_id:
break
elif id == self.n_discrete_size:
if coor_loop_check < 9:
break
if coor_loop_check % 3 !=0:
break
coor_loop_check = 0
else:
if coor_loop_check % 3 == 0 and coor_loop_check >= 9:
continuous_coors[i, vertice_count] = continuous_coors[i, vertice_count-2]
continuous_coors[i, vertice_count+1] = continuous_coors[i, vertice_count-1]
vertice_count += 2
continuous_coors[i, vertice_count, coor_loop_check % 3] = undiscretize(id, self.coor_continuous_range[0], self.coor_continuous_range[1], self.n_discrete_size)
if coor_loop_check % 3 == 2:
vertice_count += 1
coor_loop_check += 1
continuous_coors = rearrange(continuous_coors, 'b (nf nv) c -> b nf nv c', nv=3, c=3)
return continuous_coors # b, nf, 3, 3
def forward(self, data_dict: dict, is_eval: bool = False) -> dict:
if not is_eval:
return self.train_one_step(data_dict)
else:
return self.generate(data_dict)
def process_point_feature(self, point_feature):
encode_feature = torch.zeros(point_feature.shape[0], self.cond_length, self.config.word_embed_proj_dim,
device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0])
shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:])
encode_feature[:, 1:] = self.cond_proj(torch.cat([point_feature[:, 1:], shape_latents], dim=-1))
return encode_feature
@torch.no_grad()
def forward(self, pc_normal, sampling=False) -> dict:
batch_size = pc_normal.shape[0]
point_feature = self.point_encoder.encode_latents(pc_normal)
processed_point_feature = self.process_point_feature(point_feature)
generate_length = self.max_length - self.cond_length
net_device = next(self.parameters()).device
outputs = torch.ones(batch_size, generate_length).long().to(net_device) * self.eos_token_id
# batch x ntokens
if not sampling:
results = self.transformer.generate(
inputs_embeds=processed_point_feature,
max_new_tokens=generate_length, # all faces plus two
num_beams=1,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
)
else:
results = self.transformer.generate(
inputs_embeds = processed_point_feature,
max_new_tokens = generate_length, # all faces plus two
do_sample=True,
top_k=50,
top_p=0.95,
bos_token_id = self.bos_token_id,
eos_token_id = self.eos_token_id,
pad_token_id = self.pad_token_id,
)
assert results.shape[1] <= generate_length # B x ID bos is not included since it's predicted
outputs[:, :results.shape[1]] = results
# batch x ntokens ====> batch x ntokens x D
outputs = outputs[:, 1: -1]
outputs[outputs == self.bos_token_id] = self.pad_id
outputs[outputs == self.eos_token_id] = self.pad_id
outputs[outputs == self.pad_token_id] = self.pad_id
outputs[outputs != self.pad_id] -= 3
gen_mesh = self.adjacent_detokenize(outputs)
return gen_mesh
def undiscretize(
t,
low,#-0.5
high,# 0.5
num_discrete
):
t = t.float() #[0, num_discrete-1]
t /= num_discrete # 0<=t<1
t = t * (high - low) + low # -0.5 <= t < 0.5
return t