Spaces:
Runtime error
Runtime error
File size: 6,297 Bytes
38601f1 f967df8 38601f1 3f4e51f 38601f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import json
from pathlib import Path
import os
from uuid import uuid4
from threading import Lock
import gradio as gr
import jsonlines
from huggingface_hub import CommitScheduler, snapshot_download
snapshot_download(repo_id="TideDra/HDBench", local_dir="./",repo_type="dataset",allow_patterns=["data_dir/*"])
JSON_DATASET_DIR = Path("raw_annotations")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"{uuid4()}.json"
scheduler = CommitScheduler(
repo_id="HDBench",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data_dir/raw_annotations",
token=os.environ["HF_TOKEN"],
)
global dataset
with open("./data_dir/qwenvl_test2017.json") as f:
dataset = json.load(f)
dataset = {d['image']:d for d in dataset}
if os.path.exists("./data_dir/raw_annotations"):
exist_annotations = os.listdir("./data_dir/raw_annotations")
for anno in exist_annotations:
anno = os.path.join("./data_dir/raw_annotations",anno)
with jsonlines.open(anno) as reader:
for obj in reader:
if obj['image'] in dataset:
dataset.pop(obj['image'])
dataset = list(dataset.values())
dispatcher_lock = Lock()
def submit(name: str,answer:str,img:str) -> str:
global dataset
global JSON_DATASET_DIR
global JSON_DATASET_PATH
with scheduler.lock:
# file size should less than 5 mb
with JSON_DATASET_PATH.open("a") as f:
json.dump({"annotator": name, "image": img, "caption": answer}, f)
f.write("\n")
if JSON_DATASET_PATH.stat().st_size > 1024 * 1024 * 4:
JSON_DATASET_PATH = JSON_DATASET_DIR / f"{uuid4()}.json"
return None,None,f"Number of samples to be annotated: {len(dataset)}"
def disable_and_enable_buttons():
return gr.update(interactive=False),gr.update(interactive=True)
def get_new_data():
global dataset
with dispatcher_lock:
if len(dataset) == 0:
data = (None,None,None)
else:
data = dataset[-1]
dataset = dataset[:-1]
data = (data["image"],data["caption"],data["image"])
return data
instruction = """
# 任务说明:
给定一张图片和该图片的描述,描述中可能存在错误,你需要用\<f>和\</f>标签将错误部分标出,并紧接着在其后用\<t>和\</t>标签给出你的纠正。如果描述完全正确则不需要做任何修改。请在Your Name中填写你的昵称,以方便我们统计与审核你的贡献。点击Next按钮获取下一个样本,修改完描述后,点击Submit按钮提交你的标注。标注结果可在[此仓库](https://huggingface.co/datasets/TideDra/HDBench/tree/main/data_dir/raw_annotations)查看(每十分钟更新一次),请确保你的标注成功存储到了仓库中,我们最终根据仓库中的标注结果进行统计你的贡献。
标注时需满足一些要求,以下要求按优先级从高到低依次列出,当要求冲突时,满足高优先级要求:
1. 将错误部分替换为正确答案后,整体语句通顺,没有语法错误。反例: "It is a cat eating a \<f>mouse\</f>\<t>rice\</t>" 正例: "It is a cat eating \<f>a mouse\</f>\<t>rice\</t>"。解释: rice不可数,所以要把"a"替换掉。
2. 改动应尽量少,尽量不改变原来的句式。反例: "There are \<f>two people in the image\</f>\<t>three people in the image\</t>" 正例: "There are \<f>two\</f>\<t>three\</t> people in the image"。解释:只把two改成three,用最少的改动实现了纠错。
3. 标签内部不要有冗余空格。反例: "There are\<f> two \</f>\<t> three \</t> people in the image" 正例: "There are \<f>two\</f>\<t>three\</t> people in the image"
4. 当描述中提及图片中完全不存在或不相干的事物,应直接删除该部分.\<t>\</t>内部不加任何文字表示删除。例:"In the image, there is a dog. \<f>There are also some cats.\</f>\<t>\</t>"
"""
example1 = ["./assets/example.png","The image features a misty canal with two wooden benches placed alongside it. One of the benches is positioned closer to the water, while the other is a bit further back. The foggy atmosphere creates a sense of serenity and calmness, as if the benches are the only beings in the scene.\n\nIn the distance, there <f>are two cars</f><t>is one car</t> parked near a bridge, adding to the serene ambiance. <f>A person can be seen in the far end of the scene, likely enjoying the peaceful environment.</f><t></t> The bench placement and the misty canal make this scene an ideal spot for relaxation or reflection."]
example2 = ["./assets/example2.png","The image features a smiling stuffed lion sitting on a wooden picnic table. The picnic table is located in a park-like setting, with green grass surrounding the bench on which the stuffed lion is placed. \nThere <f>are two</f><t>is one</t> bench visible in the scene, with the main bench featuring the stuffed lion on it. <f>The other bench is situated a little to the right and is empty.</f><t></t>The arrangement creates a playful atmosphere, as if the lion is waiting for someone or enjoying the company of the empty bench."]
with gr.Blocks() as demo:
gr.Markdown(instruction)
with gr.Row():
image = gr.Image()
with gr.Column():
image_path = gr.State()
rest_num = gr.Markdown(label="rest_num",value=f"Number of samples to be annotated: {len(dataset)}")
name = gr.Textbox(label="Your Name",placeholder="Set your name here to mark your annotations")
text = gr.Textbox(label="Caption",lines=20)
with gr.Row():
next_button = gr.Button("Next")
submit_button = gr.Button("Submit",interactive=False)
gr.Markdown("# 示例:")
gr.Examples(
examples=[example1,example2],
inputs=[image,text]
)
submit_button.click(fn=submit,inputs=[name,text,image_path],outputs=[image,text,rest_num]).success(
fn=disable_and_enable_buttons,
outputs=[submit_button,next_button]
)
next_button.click(fn=get_new_data,outputs=[image_path,text,image]).success(
fn=disable_and_enable_buttons,
outputs=[next_button,submit_button]
)
demo.launch(share=True) |