import joblib import streamlit as st import pandas as pd import numpy as np def main(): st.title("Credit Application Form") Occupation = st.selectbox("Occupation", options=["Accountant", "Architect", "Developer", "Doctor", "Engineer", "Entrepreneur", "Journalist", "Lawyer", "Manager", "Mechanic", "Media_Manager", "Musician", "Scientist", "Teacher", "Writer"]) Payment_Behaviour = st.selectbox("Payment Behavior", options=["High_spent_Large_value_payments", "High_spent_Medium_value_payments", "High_spent_Small_value_payments", "Low_spent_Large_value_payments", "Low_spent_Medium_value_payments", "Low_spent_Small_value_payments"]) Month = st.select_slider("Month", options=[1, 2, 3, 4, 5, 6, 7, 8]) Num_Bank_Accounts = st.select_slider("Number of Bank Accounts", options=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) Num_Credit_Card = st.select_slider("Number of Credit Cards", options=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) Num_of_Loan = st.select_slider("Number of Loan", options=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Interest_Rate = st.select_slider("Interest Rate", np.arange(1, 35, 1)) # Interest_Rate = st.number_input("Interest Rate", min_value=1, max_value=34) Age = st.number_input("Age") Annual_Income = st.number_input("Annual Income", value=1.0) Monthly_Inhand_Salary = st.number_input("Monthly Inhand Salary") Num_of_Delayed_Payment = st.number_input("Number of Delayed Payments", format='%u', value=0) Changed_Credit_Limit = st.number_input("Changed Credit Limit") Num_Credit_Inquiries = st.number_input("Number of Credit Inquiries", format='%u', value=0) Credit_History_Age = st.number_input("Credit History Age") Outstanding_Debt = st.number_input("Outstanding Debt") Credit_Utilization_Ratio = st.number_input("Credit Utilization Ratio") Total_EMI_per_month = st.number_input("Total EMI per Month") Amount_invested_monthly = st.number_input("Amount Invested Monthly") Monthly_Balance = st.number_input("Monthly_Balance") Credit_Mix = st.radio("Credit Mix", options=("Bad", "Good"), index=1) submit_button = st.button("Submit") if submit_button: # Process the form data process_form_data(Month, Age, Occupation, Annual_Income, Monthly_Inhand_Salary, Num_Bank_Accounts, Num_Credit_Card, Interest_Rate, Num_of_Loan, Num_of_Delayed_Payment, Changed_Credit_Limit, Num_Credit_Inquiries, Credit_Mix, Payment_Behaviour, Credit_History_Age, Outstanding_Debt, Credit_Utilization_Ratio, Total_EMI_per_month, Amount_invested_monthly, Monthly_Balance) def process_form_data(Month, Age, Occupation, Annual_Income, Monthly_Inhand_Salary, Num_Bank_Accounts, Num_Credit_Card, Interest_Rate, Num_of_Loan, Num_of_Delayed_Payment, Changed_Credit_Limit, Num_Credit_Inquiries, Credit_Mix, Payment_Behaviour, Credit_History_Age, Outstanding_Debt, Credit_Utilization_Ratio, Total_EMI_per_month, Amount_invested_monthly, Monthly_Balance): # Feature Engineering Monthly_Savings = Monthly_Inhand_Salary - Annual_Income / 12 Total_Accounts = int(Num_Bank_Accounts) + int(Num_Credit_Card) Savings_to_Income_Ratio = Monthly_Savings / Annual_Income encoders = joblib.load('encoders.joblib') model = joblib.load('Random_Forest.joblib') dataDict = {"Month": Month, 'Occupation': Occupation, 'Num_Bank_Accounts': Num_Bank_Accounts, 'Num_Credit_Card': Num_Credit_Card, 'Interest_Rate': Interest_Rate, 'Num_of_Loan': Num_of_Loan, 'Credit_Mix': Credit_Mix, 'Credit_History_Age': Credit_History_Age, 'Num_of_Delayed_Payment': Num_of_Delayed_Payment, 'Payment_of_Min_Amount': Num_of_Delayed_Payment, 'Payment_Behaviour': Payment_Behaviour, 'Age': Age, 'Annual_Income': Annual_Income, 'Monthly_Inhand_Salary': Monthly_Inhand_Salary, 'Outstanding_Debt': Outstanding_Debt, 'Credit_Utilization_Ratio': Credit_Utilization_Ratio,'Changed_Credit_Limit': Changed_Credit_Limit, 'Num_Credit_Inquiries': Num_Credit_Inquiries, 'Total_EMI_per_month': Total_EMI_per_month, 'Amount_invested_monthly': Amount_invested_monthly, 'Monthly_Balance': Monthly_Balance, 'Total_Accounts': Total_Accounts, 'Savings_to_Income_Ratio': Savings_to_Income_Ratio} df = pd.DataFrame([dataDict]) cols = ['Month', 'Num_Bank_Accounts', 'Num_Credit_Card', 'Interest_Rate', 'Num_of_Loan'] df[cols] = df[cols].astype(int) decodedData = df.copy() for col in ['Occupation', 'Payment_Behaviour', 'Credit_Mix']: encoder = encoders[col] decodedData[col] = encoder.transform(decodedData[col]) result = model.predict(decodedData) result = encoders['Credit_Score'].inverse_transform(result) st.write(df) st.write(decodedData) st.write(result) if __name__ == "__main__": # Load the models and encoders encoders = joblib.load('encoders.joblib') model = joblib.load('Random_Forest.joblib') # Run the Streamlit app main()