Spaces:
Sleeping
Sleeping
File size: 8,485 Bytes
6237b12 6165314 dd2cd7c 2e6a5a3 82c141f 9c2faf5 f756937 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6165314 9c2faf5 6237b12 82c141f 6237b12 9c2faf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import streamlit as st
import pandas as pd
import pickle
from tqdm import tqdm
from Levenshtein import distance as lev
import joblib
from googletrans import Translator
from indictrans import Transliterator
from pyphonetics import RefinedSoundex
from bs4 import BeautifulSoup
import re
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load sentiment analysis model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Seethal/sentiment_analysis_generic_dataset")
model = AutoModelForSequenceClassification.from_pretrained("Seethal/sentiment_analysis_generic_dataset")
# Define a function to get the sentiment from the model
def get_sentiment(text):
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
outputs = model(**inputs)
sentiment = torch.argmax(outputs.logits, dim=1).item()
return 'Positive' if sentiment == 1 else 'Negative'
def closest_match(word, vocabulary):
best_match = None
best_distance = float('inf')
for vocab_word in vocabulary:
dist = lev(word, vocab_word)
if dist < best_distance:
best_distance = dist
best_match = vocab_word
return best_match
def main():
st.title('Text Processing App')
rs = RefinedSoundex()
normalized_string_final=[]
translator = Translator()
trn = Transliterator(source='eng', target='hin')
with open(r'./english_vocab.pkl', "rb") as fp:
english = pickle.load(fp)
english_vocab=english
with open(r'./hinglish_vocab.pkl', "rb") as fp:
hinglish = pickle.load(fp)
hinglish_vocab=hinglish
english_vocab['and'] = ['and']
english_vocab['is'] = ['is']
def clean_tweet(tweet):
text=re.sub(r'@ [A-Za-z0-9\']+','',tweet)
text=BeautifulSoup(text,'lxml').get_text()
text=re.sub(r'https (//)[A-Za-z0-9. ]*(/) [A-Za-z0-9]+','',text)
text=re.sub(r'https[A-Za-z0-9/. ]*','',text)
text=re.sub("[^a-zA-Z]"," ",text)
text=re.sub(r'\bRT\b',' ',text)
text=re.sub(r'\bnan\b',' ',text)
return text
input_text = st.text_area("Enter the text:")
total_translated = []
if st.button('Process'):
data = {'Text': [input_text]}
df1 = pd.DataFrame(data)
df1['Text'] = df1['Text'].apply(clean_tweet)
cleaned_text = df1['Text'].tolist()[0]
total_text = [cleaned_text]
st.write("Input Text:", total_text)
for i in tqdm(total_text):
test_text=i.split()
not_changed_idx=[]
for i in range(len(test_text)):
not_changed_idx.append(0)
changed_text=[]
changed_idx=[]
for i in range(len(test_text)):
for key in english_vocab:
done=0
for val in english_vocab[key]:
if(test_text[i]==val):
changed_text.append(key)
changed_idx.append(i)
not_changed_idx[i]=1
done=1
break
if done==1:
break
normalized_string=[]
res = dict(zip(changed_idx, changed_text))
for i in range(len(test_text)):
try:
normalized_string.append(res[i])
except:
normalized_string.append(test_text[i])
print("English Normalized String:", normalized_string)
# hinglish word change
test_list = [i for i in range(len(test_text))]
changed_hing_idx = [i for i in test_list if i not in changed_idx]
hinglish_text_part = [test_text[i] for i in changed_hing_idx]
changed_text2 = []
changed_idx2 = []
for i in range(len(hinglish_text_part)):
for key in hinglish_vocab:
done = 0
for val in hinglish_vocab[key]:
if hinglish_text_part[i] == val:
changed_text2.append(key)
changed_idx2.append(i)
done = 1
break
if done == 1:
break
normalized_string2 = []
res2 = dict(zip(changed_idx2, changed_text2))
for i in range(len(hinglish_text_part)):
try:
normalized_string2.append(res2[i])
except:
normalized_string2.append(hinglish_text_part[i])
for i in changed_idx:
normalized_string2.append(res[i])
print("Hinglish Normalized String:", normalized_string)
# finding phoneme and leventise distance for unchanged word
for i in range(len(not_changed_idx)):
try:
if not_changed_idx[i] == 0:
eng_phoneme_correction = []
for j in english_vocab:
try:
phoneme = rs.distance(normalized_string2[i], j)
except:
pass
if phoneme <= 1:
eng_phoneme_correction.append(j)
eng_lev_correction = []
for k in eng_phoneme_correction:
dist = lev(normalized_string2[i], k)
if dist <= 2:
eng_lev_correction.append(k)
eng_lev_correction.extend(hing_lev_correction)
new_correction = eng_lev_correction
eng_lev_correction = []
for l in new_correction:
dist = lev(normalized_string2[i], l)
eng_lev_correction.append(dist)
min_val = min(eng_lev_correction)
min_idx = eng_lev_correction.index(min_val)
suggestion = closest_match(new_correction[min_idx], english_vocab.keys())
normalized_string2[i] = suggestion
except:
pass
normalized_string_final = normalized_string2
print("Phoneme levenshtein Distionary suggestion Normalized String:", normalized_string_final)
# sentence tagging
classifier = joblib.load(r"./classifer.joblib")
classify = []
for i in normalized_string:
test_classify = classifier(i)
classify.append(test_classify[0].get("label"))
for i in range(len(classify)):
if classify[i] == 'en':
try:
normalized_string[i] = translator.translate(normalized_string[i], src='en', dest='hi').text
except:
normalized_string[i] = "delete"
print("English -> Hindi Translated String:", normalized_string)
conversion_list = [trn.transform(i) for i in normalized_string]
print("Hinglish -> Hindi Transliterated String:", conversion_list)
sentence = [" ".join(conversion_list)]
translated = []
for i in sentence:
try:
translated_text = translator.translate(i, src='hi', dest='en')
translated.append(translated_text.text)
except:
translated.append("delete")
print("Hindi -> English Translated String:", translated)
total_translated.append(translated[0])
st.write("English Normalized String:", normalized_string)
st.write("Hinglish Normalized String:", normalized_string)
st.write("Phoneme Levenshtein Dictionary Suggestion Normalized String:", normalized_string_final)
st.write("English -> Hindi Translated String:", normalized_string)
st.write("Hinglish -> Hindi Transliterated String:", conversion_list)
st.write("Hindi -> English Translated String:", translated)
# Get the sentiment of the translated text
sentiment = get_sentiment(translated[0])
st.write("Sentiment of Translated Text:", sentiment)
if __name__ == '__main__':
main() |