import getpass import os import random import re from langchain_openai import ChatOpenAI from langchain_core.globals import set_llm_cache from langchain_core.documents import Document from langchain_community.cache import SQLiteCache from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langgraph.graph import END, StateGraph, START from langchain_core.output_parsers import StrOutputParser from typing import List from typing_extensions import TypedDict import gradio as gr from pydantic import BaseModel, Field # For the reranking step from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import CrossEncoderReranker from langchain_community.cross_encoders import HuggingFaceCrossEncoder from prompts import IMPROVE_PROMPT, ANSWER_PROMPT, HALLUCINATION_PROMPT, RESOLVER_PROMPT, REWRITER_PROMPT TOPICS = [ "ICT strategy management", "IT governance management & internal controls system", "Internal audit & compliance management", "ICT asset & architecture management", "ICT risk management", "Information security & human resource security management", "IT configuration management", "Cryptography, certificates & key management", "Secure network & infrastructure management", "Backup", "Security testing", "Threat-led penetration testing", "Logging", "Data and ICT system security", "Physical and environmental security", "Vulnerability & patch management", "Identity and access management", "ICT change management", "IT project & project portfolio management", "Acquisition, development & maintenance of ICT systems & EUA", "ICT incident management", "Monitoring, availability, capacity & performance management", "ICT outsourcing & third-party risk management", "Subcontracting management", "ICT provider & service level management", "ICT business continuity management" ] class GradeHallucinations(BaseModel): """Binary score for hallucination present in generation answer.""" binary_score: str = Field( description="Answer is grounded in the facts, 'yes' or 'no'" ) class GradeAnswer(BaseModel): """Binary score to assess answer addresses question.""" binary_score: str = Field( description="Answer addresses the question, 'yes' or 'no'" ) class AnswerWithCitations(BaseModel): answer: str = Field( description="Comprehensive answer to the user's question with citations.", ) citations: List[str] = Field( description="List of the first 20 characters of sources cited in the answer." ) class GraphState(TypedDict): """ Represents the state of our graph. Attributes: question: question generation: LLM generation documents: list of documents """ question: str selected_sources: List[List[bool]] generation: str documents: List[str] dora_docs: List[str] dora_rts_docs: List[str] dora_news_docs: List[str] citations: List[str] def _set_env(var: str): if os.environ.get(var): return os.environ[var] = getpass.getpass(var + ":") def load_vectorstores(paths: list): # The dora vectorstore embd = OpenAIEmbeddings() model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base") compressor = CrossEncoderReranker(model=model, top_n=4) vectorstores = [FAISS.load_local(path, embd, allow_dangerous_deserialization=True) for path in paths] base_retrievers = [vectorstore.as_retriever(search_type="mmr", search_kwargs={ "k": 7, "fetch_k": 10, "score_threshold": 0.8, }) for vectorstore in vectorstores] retrievers = [ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) for retriever in base_retrievers] return retrievers def starts_with_ignoring_blanks(full_text, prefix): # Normalize all types of blanks to regular spaces normalized_full_text = re.sub(r'\s+', ' ', full_text.strip()) normalized_prefix = re.sub(r'\s+', ' ', prefix.strip()) # Check if the normalized full text starts with the normalized prefix return normalized_full_text.startswith(normalized_prefix) def match_citations_to_documents(citations: List[str], documents: List[Document]): """ Matches the citations to the documents by searching for the source and section in the documents Args: citations (List[str]): List of citations to match documents (List[Document]): List of documents to search in Returns: dict: Dictionary with the matched documents, where the key is the citation number and the value is the matched document """ matched_documents = {} for num, citation in enumerate(citations, 1): # Extract the relevant parts from the citation (source and section) print(f"checking the {num} citation: {citation}") for doc in documents: print(f"Does this: '{doc.page_content[:30]}' starts with this: '{citation}'?") print(f"{doc.page_content[:40] =}") print(f"{citation} =") print(f"{doc.page_content[:40].startswith(citation) =}") if starts_with_ignoring_blanks(doc.page_content[:40], citation): #Strangely, the 25 of the citation often become 35 print("yes") if doc.metadata.get("section", None): matched_documents[f"{num}"] = f"***{doc.metadata['source']} section {doc.metadata['section']}***: {doc.page_content}" else: matched_documents[f"{num}"] = f"***{doc.metadata['source']}***: {doc.page_content}" break else: print("no") return matched_documents # Put all chains in fuctions def dora_rewrite(state): """ Rewrites the question to fit dora wording Args: state (dict): The current graph state Returns: state (dict): New key added to state, documents, that contains retrieved documents """ print("---TRANSLATE TO DORA---") question = state["question"] new_question = dora_question_rewriter.invoke({"question": question, "topics": TOPICS}) if new_question == "Thats an interesting question, but I dont think I can answer it based on my Dora knowledge.": return {"question": new_question, "generation": new_question} else: return {"question": new_question} def retrieve(state): """ Retrieve documents Args: state (dict): The current graph state Returns: state (dict): New key added to state, documents, that contains retrieved documents """ print("---RETRIEVE---") question = state["question"] selected_sources = state["selected_sources"] # Retrieval dora_docs = dora_retriever.invoke(question) if selected_sources[0] else [] dora_rts_docs = dora_rts_retriever.invoke(question) if selected_sources[1] else [] dora_news_docs = dora_news_retriever.invoke(question) if selected_sources[2] else [] documents = dora_docs + dora_rts_docs + dora_news_docs return {"documents": documents, "dora_docs": dora_docs, "dora_rts_docs": dora_rts_docs, "dora_news_docs": dora_news_docs} def generate(state): """ Generate answer Args: state (dict): The current graph state Returns: state (dict): New key added to state, generation, that contains LLM generation """ print("---GENERATE---") question = state["question"] documents = state["documents"] # RAG generation answer = answer_chain.invoke({"context": documents, "question": question}) generation = answer.answer print(f"{answer.citations = }") citations = match_citations_to_documents(answer.citations, documents) print(f"{len(citations)} found, is that correct?") return {"generation": generation, "citations": citations} def transform_query(state): """ Transform the query to produce a better question. Args: state (dict): The current graph state Returns: state (dict): Updates question key with a re-phrased question """ print("---TRANSFORM QUERY---") question = state["question"] # Re-write question better_question = question_rewriter.invoke({"question": question}) print(f"{better_question =}") return {"question": better_question} ### Edges ### def suitable_question(state): """ Determines whether the question is suitable. Args: state (dict): The current graph state Returns: str: Binary decision for next node to call """ print("---ASSESSING THE QUESTION---") question = state["question"] #print(f"{question = }") if question == "Thats an interesting question, but I dont think I can answer it based on my Dora knowledge.": return "end" else: return "retrieve" def decide_to_generate(state): """ Determines whether to generate an answer, or re-generate a question. Args: state (dict): The current graph state Returns: str: Binary decision for next node to call """ print("---ASSESS GRADED DOCUMENTS---") documents = state["documents"] if not documents: # All documents have been filtered check_relevance # We will re-generate a new query print( "---DECISION: ALL DOCUMENTS ARE IRRELEVANT TO QUESTION, TRANSFORM QUERY---" ) return "transform_query" else: # We have relevant documents, so generate answer print(f"---DECISION: GENERATE WITH {len(documents)} DOCUMENTS---") return "generate" def grade_generation_v_documents_and_question(state): """ Determines whether the generation is grounded in the document and answers question. Args: state (dict): The current graph state Returns: str: Decision for next node to call """ print("---CHECK HALLUCINATIONS---") question = state["question"] documents = state["documents"] generation = state["generation"] score = hallucination_grader.invoke( {"documents": documents, "generation": generation} ) grade = score.binary_score # Check hallucination if grade == "yes": print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---") # Check question-answering print("---GRADE GENERATION vs QUESTION---") score = answer_grader.invoke({"question": question, "generation": generation}) grade = score.binary_score if grade == "yes": print("---DECISION: GENERATION ADDRESSES QUESTION---") return "useful" else: print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---") return "not useful" else: print("---DECISION: THOSE DOCUMENTS ARE NOT GROUNDING THIS GENERATION---") return "not supported" # Then compile the graph def compile_graph(): workflow = StateGraph(GraphState) # Define the nodes workflow.add_node("dora_rewrite", dora_rewrite) workflow.add_node("retrieve", retrieve) workflow.add_node("generate", generate) workflow.add_node("transform_query", transform_query) # Define the edges workflow.add_edge(START, "dora_rewrite") workflow.add_conditional_edges( "dora_rewrite", suitable_question, { "retrieve": "retrieve", "end": END, }, ) workflow.add_conditional_edges( "retrieve", decide_to_generate, { "transform_query": "transform_query", "generate": "generate", }, ) workflow.add_edge("transform_query", "retrieve") workflow.add_conditional_edges( "generate", grade_generation_v_documents_and_question, { "not supported": "transform_query", "useful": END, "not useful": "transform_query", }, ) # Compile app = workflow.compile() return app # Function to interact with Gradio def generate_response(question: str, dora: bool, rts: bool, news: bool): selected_sources = [dora, rts, news] if any([dora, rts, news]) else [True, False, False] state = app.invoke({"question": question, "selected_sources": selected_sources}) return ( state["generation"], ('\n\n'.join([f"{num} - {doc}" for num, doc in state["citations"].items()])) if "citations" in state and state["citations"] else 'No citations available.', # ('\n\n'.join([f"***{doc.metadata['source']} section {doc.metadata['section']}***: {doc.page_content}" for doc in state["dora_docs"]])) if "dora_docs" in state and state["dora_docs"] else 'No documents available.', # ('\n\n'.join([f"***{doc.metadata['source']}, section {doc.metadata['section']}***: {doc.page_content}" for doc in state["dora_rts_docs"]])) if "dora_rts_docs" in state and state["dora_rts_docs"] else 'No documents available.', # ('\n\n'.join([f"***{doc.metadata['source']}***: {doc.page_content}" for doc in state["dora_news_docs"]])) if "dora_news_docs" in state and state["dora_news_docs"] else 'No documents available.', ) def show_loading(prompt: str): return [prompt, "loading", "loading"] def on_click(): return "I would love to hear your opinion: \nTilllangbein@gmail.com" def clear_results(): return "", "", "" def random_prompt(): return random.choice([ "How does DORA define critical ICT services and who must comply?", "What are the key requirements for ICT risk management under DORA?", "What are the reporting obligations under DORA for major incidents?", "What third-party risk management requirements does DORA impose?", "How does DORA's testing framework compare with the UK's CBEST framework?", "Do ICT service providers fall under DORA's regulatory requirements?", "How should I prepare for DORA's Threat-Led Penetration Testing (TLPT)?", "What role do financial supervisors play in DORA compliance?", "What penalties are applicable if an organization fails to comply with DORA?", "How does DORA align with the NIS2 Directive in Europe?", "Do insurance companies also fall under DORA's requirements?", "What are the main differences between DORA and GDPR regarding incident reporting?", "Are there specific resilience requirements for cloud service providers under DORA?", "What are the main deadlines for compliance under DORA?", "What steps should I take to ensure my third-party vendors are compliant with DORA?" ]) def load_css(): with open('./style.css', 'r') as file: return file.read() if __name__ == "__main__": _set_env("OPENAI_API_KEY") set_llm_cache(SQLiteCache(database_path=".cache.db")) dora_retriever, dora_rts_retriever, dora_news_retriever = load_vectorstores( ["./dora_vectorstore_data_faiss.vst", "./rts_eur_lex_vectorstore_faiss.vst", "./bafin_news_vectorstore_faiss.vst",] ) fast_llm = ChatOpenAI(model="gpt-3.5-turbo") tool_llm = ChatOpenAI(model="gpt-4o") rewrite_llm = ChatOpenAI(model="gpt-4o", temperature=1, cache=False) dora_question_rewriter = IMPROVE_PROMPT | tool_llm | StrOutputParser() answer_chain = ANSWER_PROMPT | tool_llm.with_structured_output( AnswerWithCitations, include_raw=False ).with_config(run_name="GenerateAnswer") hallucination_grader = HALLUCINATION_PROMPT | fast_llm.with_structured_output(GradeHallucinations) answer_grader = RESOLVER_PROMPT | fast_llm.with_structured_output(GradeAnswer) question_rewriter = REWRITER_PROMPT | rewrite_llm | StrOutputParser() app = compile_graph() with gr.Blocks(title='Artificial Compliance', css=load_css(), fill_width=True, fill_height=True,) as demo: # theme=gr.themes.Monochrome(), # Adding a sliding navbar with gr.Column(scale=1, elem_id='navbar'): gr.Image( './logo.png', interactive=False, show_label=False, width=200, height=200 ) with gr.Column(): dora_chatbot_button = gr.Checkbox(label="Dora", value=True, elem_classes=["navbar-button"]) document_workbench_button = gr.Checkbox(label="Published RTS documents", value=True, elem_classes=["navbar-button"]) newsfeed_button = gr.Checkbox(label="Bafin documents", value=True, elem_classes=["navbar-button"]) question_prompt = gr.Textbox( value=random_prompt(), label='What you always wanted to know about Dora:', elem_classes=['textbox'], lines=6 ) with gr.Row(): clear_results_button = gr.Button('Clear Results', variant='secondary', size="m") submit_button = gr.Button('Submit', variant='primary', size="m") # Adding a header gr.Markdown("# The Doracle", elem_id="header") gr.Markdown("----------------------------------------------------------------------------") display_prompt = gr.Markdown( value="", label="question_prompt", elem_id="header" ) gr.Markdown("----------------------------------------------------------------------------") with gr.Column(scale=1): with gr.Row(elem_id='text_block'): llm_generation = gr.Markdown(label="LLM Generation", elem_id="llm_generation") gr.Markdown("----------------------------------------------------------------------------") with gr.Row(elem_id='text_block'): citations = gr.Markdown(label="citations", elem_id="llm_generation") gr.Markdown("----------------------------------------------------------------------------") # Adding a footer with impressum and contact with gr.Row(elem_classes="footer"): gr.Markdown("Contact", elem_id="clickable_markdown") invisible_btn = gr.Button("", elem_id="invisible_button") gr.on( triggers=[question_prompt.submit, submit_button.click], inputs=[question_prompt], outputs=[display_prompt, llm_generation, citations], fn=show_loading ).then( outputs=[llm_generation, citations], inputs=[question_prompt, dora_chatbot_button, document_workbench_button, newsfeed_button], fn=generate_response ) # Use gr.on() with the invisible button's click event gr.on( triggers=[invisible_btn.click], fn=on_click, outputs=[llm_generation] ) # Clearing out all results when the appropriate button is clicked clear_results_button.click(fn=clear_results, outputs=[display_prompt, llm_generation, citations]) demo.launch()