tirendazakademi
First model version
384c8d4
raw
history blame
971 Bytes
import gradio as gr
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="Tirendaz/my_distilbert_model")
def text_classification(text):
result= classifier(text)
sentiment_label = result[0]['label']
sentiment_score = result[0]['score']
formatted_output = f"This sentiment is {sentiment_label} with the probability {sentiment_score*100:.2f}%"
return formatted_output
examples=["This is wonderful movie!", "The movie was really bad; I didn't like it."]
io = gr.Interface(fn=text_classification,
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter title here..."),
outputs=gr.Textbox(lines=2, label="Text Classification Result"),
title="Text Classification",
description="Enter a text and see the text classification result!",
examples=examples)
io.launch(inline=False, share=True)