Spaces:
Build error
Build error
File size: 53,212 Bytes
93f3688 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 |
import io
import random
import shutil
import string
from zipfile import ZipFile
import streamlit as st
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from hugchat import hugchat
from hugchat.login import Login
import pandas as pd
import asyncio
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
import sketch
from langchain.text_splitter import CharacterTextSplitter
from promptTemplate import prompt4conversation, prompt4Data, prompt4Code, prompt4Context, prompt4Audio, prompt4YT
from promptTemplate import prompt4conversationInternet
# FOR DEVELOPMENT NEW PLUGIN
# from promptTemplate import yourPLUGIN
from exportchat import export_chat
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from HuggingChatAPI import HuggingChat
from langchain.embeddings import HuggingFaceHubEmbeddings
from youtube_transcript_api import YouTubeTranscriptApi
import requests
from bs4 import BeautifulSoup
import speech_recognition as sr
import pdfplumber
import docx2txt
from duckduckgo_search import DDGS
from itertools import islice
from os import path
from pydub import AudioSegment
import os
hf = None
repo_id = "sentence-transformers/all-mpnet-base-v2"
if 'hf_token' in st.session_state:
if 'hf' not in st.session_state:
hf = HuggingFaceHubEmbeddings(
repo_id=repo_id,
task="feature-extraction",
huggingfacehub_api_token=st.session_state['hf_token'],
) # type: ignore
st.session_state['hf'] = hf
st.set_page_config(
page_title="Talk with ToastGPTπ¬", page_icon="β
", layout="wide", initial_sidebar_state="expanded"
)
st.markdown('<style>.css-w770g5{\
width: 100%;}\
.css-b3z5c9{ \
width: 100%;}\
.stButton>button{\
width: 100%;}\
.stDownloadButton>button{\
width: 100%;}\
</style>', unsafe_allow_html=True)
# Sidebar contents for logIN, choose plugin, and export chat
with st.sidebar:
st.title("π€π¬ Product Description Masterpiece")
if 'hf_email' not in st.session_state or 'hf_pass' not in st.session_state:
with st.expander("βΉοΈ Login in Hugging Face", expanded=True):
st.write("β οΈ You need to login in Hugging Face to use this app. You can register [here](https://huggingface.co/join).")
st.header('Hugging Face Login')
hf_email = st.text_input('Enter E-mail:')
hf_pass = st.text_input('Enter password:', type='password')
hf_token = st.text_input('Enter API Token:', type='password')
if st.button('Login π') and hf_email and hf_pass and hf_token:
with st.spinner('π Logging in...'):
st.session_state['hf_email'] = hf_email
st.session_state['hf_pass'] = hf_pass
st.session_state['hf_token'] = hf_token
try:
sign = Login(st.session_state['hf_email'], st.session_state['hf_pass'])
cookies = sign.login()
chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
except Exception as e:
st.error(e)
st.info("β οΈ Please check your credentials and try again.")
st.error("β οΈ dont abuse the ToastGPT")
st.warning("β οΈ If you don't have an account, you can register [here](https://huggingface.co/join).")
from time import sleep
sleep(3)
del st.session_state['hf_email']
del st.session_state['hf_pass']
del st.session_state['hf_token']
st.experimental_rerun()
st.session_state['chatbot'] = chatbot
id = st.session_state['chatbot'].new_conversation()
st.session_state['chatbot'].change_conversation(id)
st.session_state['conversation'] = id
# Generate empty lists for generated and past.
## generated stores AI generated responses
if 'generated' not in st.session_state:
st.session_state['generated'] = ["I'm **ToastGPT**, How may I help you ? "]
## past stores User's questions
if 'past' not in st.session_state:
st.session_state['past'] = ['Hi!']
st.session_state['LLM'] = HuggingChat(email=st.session_state['hf_email'], psw=st.session_state['hf_pass'])
st.experimental_rerun()
else:
with st.expander("βΉοΈ Advanced Settings"):
#temperature: Optional[float]. Default is 0.5
#top_p: Optional[float]. Default is 0.95
#repetition_penalty: Optional[float]. Default is 1.2
#top_k: Optional[int]. Default is 50
#max_new_tokens: Optional[int]. Default is 1024
temperature = st.slider('π‘ Temperature', min_value=0.1, max_value=1.0, value=0.5, step=0.01)
top_p = st.slider('π‘ Top P', min_value=0.1, max_value=1.0, value=0.95, step=0.01)
repetition_penalty = st.slider('π Repetition Penalty', min_value=1.0, max_value=2.0, value=1.2, step=0.01)
top_k = st.slider('βοΈ Top K', min_value=1, max_value=100, value=50, step=1)
max_new_tokens = st.slider('π Max New Tokens', min_value=1, max_value=1024, value=1024, step=1)
# FOR DEVELOPMENT NEW PLUGIN YOU MUST ADD IT HERE INTO THE LIST
# YOU NEED ADD THE NAME AT 144 LINE
#plugins for conversation
plugins = ["π No PLUGIN","π Web Search", "π Talk with Website" , "π Talk with your DATA", "π Talk with your DOCUMENTS", "π§ Talk with your AUDIO", "π₯ Talk with YT video", "π§ GOD MODE" ,"πΎ Upload saved VectorStore"]
if 'plugin' not in st.session_state:
st.session_state['plugin'] = st.selectbox('π Plugins', plugins, index=0)
else:
if st.session_state['plugin'] == "π No PLUGIN":
st.session_state['plugin'] = st.selectbox('π Plugins', plugins, index=plugins.index(st.session_state['plugin']))
# FOR DEVELOPMENT NEW PLUGIN FOLLOW THIS TEMPLATE
# PLUGIN TEMPLATE
# if st.session_state['plugin'] == "π PLUGIN NAME" and 'PLUGIN NAME' not in st.session_state:
# # PLUGIN SETTINGS
# with st.expander("π PLUGIN NAME Settings", expanded=True):
# if 'PLUGIN NAME' not in st.session_state or st.session_state['PLUGIN NAME'] == False:
# # PLUGIN CODE
# st.session_state['PLUGIN NAME'] = True
# elif st.session_state['PLUGIN NAME'] == True:
# # PLUGIN CODE
# if st.button('π Disable PLUGIN NAME'):
# st.session_state['plugin'] = "π No PLUGIN"
# st.session_state['PLUGIN NAME'] = False
# del ALL SESSION STATE VARIABLES RELATED TO PLUGIN
# st.experimental_rerun()
# # PLUGIN UPLOADER
# if st.session_state['PLUGIN NAME'] == True:
# with st.expander("π PLUGIN NAME Uploader", expanded=True):
# # PLUGIN UPLOADER CODE
# load file
# if load file and st.button('π Upload PLUGIN NAME'):
# qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
# st.session_state['PLUGIN DB'] = qa
# st.experimental_rerun()
#
# WEB SEARCH PLUGIN
if st.session_state['plugin'] == "π Web Search" and 'web_search' not in st.session_state:
# web search settings
with st.expander("π Web Search Settings", expanded=True):
if 'web_search' not in st.session_state or st.session_state['web_search'] == False:
reg = ['us-en', 'uk-en', 'it-it']
sf = ['on', 'moderate', 'off']
tl = ['d', 'w', 'm', 'y']
if 'region' not in st.session_state:
st.session_state['region'] = st.selectbox('πΊ Region', reg, index=1)
else:
st.session_state['region'] = st.selectbox('πΊ Region', reg, index=reg.index(st.session_state['region']))
if 'safesearch' not in st.session_state:
st.session_state['safesearch'] = st.selectbox('π¨ Safe Search', sf, index=1)
else:
st.session_state['safesearch'] = st.selectbox('π¨ Safe Search', sf, index=sf.index(st.session_state['safesearch']))
if 'timelimit' not in st.session_state:
st.session_state['timelimit'] = st.selectbox('π
Time Limit', tl, index=1)
else:
st.session_state['timelimit'] = st.selectbox('π
Time Limit', tl, index=tl.index(st.session_state['timelimit']))
if 'max_results' not in st.session_state:
st.session_state['max_results'] = st.slider('π Max Results', min_value=1, max_value=5, value=2, step=1)
else:
st.session_state['max_results'] = st.slider('π Max Results', min_value=1, max_value=5, value=st.session_state['max_results'], step=1)
if st.button('π Save change'):
st.session_state['web_search'] = "True"
st.experimental_rerun()
elif st.session_state['plugin'] == "π Web Search" and st.session_state['web_search'] == 'True':
with st.expander("π Web Search Settings", expanded=True):
st.write('π Web Search is enabled')
st.write('πΊ Region: ', st.session_state['region'])
st.write('π¨ Safe Search: ', st.session_state['safesearch'])
st.write('π
Time Limit: ', st.session_state['timelimit'])
if st.button('ππ Disable Web Search'):
del st.session_state['web_search']
del st.session_state['region']
del st.session_state['safesearch']
del st.session_state['timelimit']
del st.session_state['max_results']
del st.session_state['plugin']
st.experimental_rerun()
# GOD MODE PLUGIN
if st.session_state['plugin'] == "π§ GOD MODE" and 'god_mode' not in st.session_state:
with st.expander("π§ GOD MODE Settings", expanded=True):
if 'god_mode' not in st.session_state or st.session_state['god_mode'] == False:
topic = st.text_input('π Topic', "What is ToastGPT?")
web_result = st.checkbox('π Web Search', value=True, disabled=True)
yt_result = st.checkbox('π₯ YT Search', value=True, disabled=True)
website_result = st.checkbox('π Website Search', value=True, disabled=True)
deep_of_search = st.slider('π Deep of Search', min_value=1, max_value=100, value=2, step=1)
if st.button('π§ β
Give knowledge to the model'):
full_text = []
links = []
news = []
yt_ids = []
source = []
if web_result == True:
internet_result = ""
internet_answer = ""
with DDGS() as ddgs:
with st.spinner('π Searching on the web...'):
ddgs_gen = ddgs.text(topic, region="us-en")
for r in islice(ddgs_gen, deep_of_search):
l = r['href']
source.append(l)
links.append(l)
internet_result += str(r) + "\n\n"
fast_answer = ddgs.news(topic)
for r in islice(fast_answer, deep_of_search):
internet_answer += str(r) + "\n\n"
l = r['url']
source.append(l)
news.append(r)
full_text.append(internet_result)
full_text.append(internet_answer)
if yt_result == True:
with st.spinner('π₯ Searching on YT...'):
from youtubesearchpython import VideosSearch
videosSearch = VideosSearch(topic, limit = deep_of_search)
yt_result = videosSearch.result()
for i in yt_result['result']: # type: ignore
duration = i['duration'] # type: ignore
duration = duration.split(':')
if len(duration) == 3:
#skip videos longer than 1 hour
if int(duration[0]) > 1:
continue
if len(duration) == 2:
#skip videos longer than 30 minutes
if int(duration[0]) > 30:
continue
yt_ids.append(i['id']) # type: ignore
source.append("https://www.youtube.com/watch?v="+i['id']) # type: ignore
full_text.append(i['title']) # type: ignore
if website_result == True:
for l in links:
try:
with st.spinner(f'π¨βπ» Scraping website : {l}'):
r = requests.get(l)
soup = BeautifulSoup(r.content, 'html.parser')
full_text.append(soup.get_text()+"\n\n")
except:
pass
for id in yt_ids:
try:
yt_video_txt= []
with st.spinner(f'π¨βπ» Scraping YT video : {id}'):
transcript_list = YouTubeTranscriptApi.list_transcripts(id)
transcript_en = None
last_language = ""
for transcript in transcript_list:
if transcript.language_code == 'en':
transcript_en = transcript
break
else:
last_language = transcript.language_code
if transcript_en is None:
transcript_en = transcript_list.find_transcript([last_language])
transcript_en = transcript_en.translate('en')
text = transcript_en.fetch()
yt_video_txt.append(text)
for i in range(len(yt_video_txt)):
for j in range(len(yt_video_txt[i])):
full_text.append(yt_video_txt[i][j]['text'])
except:
pass
with st.spinner('π§ Building vectorstore with knowledge...'):
full_text = "\n".join(full_text)
st.session_state['god_text'] = [full_text]
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.create_documents([full_text])
# Select embeddings
embeddings = st.session_state['hf']
# Create a vectorstore from documents
random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)
with st.spinner('π¨ Saving vectorstore...'):
# save vectorstore
db.persist()
#create .zip file of directory to download
shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
# save in session state and download
st.session_state['db'] = "./chroma_db_" + random_str + ".zip"
with st.spinner('π¨ Creating QA chain...'):
# Create retriever interface
retriever = db.as_retriever()
# Create QA chain
qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
st.session_state['god_mode'] = qa
st.session_state['god_mode_source'] = source
st.session_state['god_mode_info'] = "π§ GOD MODE have builded a vectorstore about **" + topic + f"**. The knowledge is based on\n- {len(news)} newsπ\n- {len(yt_ids)} YT videosπΊ\n- {len(links)} websitesπ \n"
st.experimental_rerun()
if st.session_state['plugin'] == "π§ GOD MODE" and 'god_mode' in st.session_state:
with st.expander("**β
GOD MODE is enabled π**", expanded=True):
st.markdown(st.session_state['god_mode_info'])
if 'db' in st.session_state:
# leave ./ from name for download
file_name = st.session_state['db'][2:]
st.download_button(
label="π© Download vectorstore",
data=open(file_name, 'rb').read(),
file_name=file_name,
mime='application/zip'
)
if st.button('π§ π Disable GOD MODE'):
del st.session_state['god_mode']
del st.session_state['db']
del st.session_state['god_text']
del st.session_state['god_mode_info']
del st.session_state['god_mode_source']
del st.session_state['plugin']
st.experimental_rerun()
# DATA PLUGIN
if st.session_state['plugin'] == "π Talk with your DATA" and 'df' not in st.session_state:
with st.expander("π Talk with your DATA", expanded= True):
upload_csv = st.file_uploader("Upload your CSV", type=['csv'])
if upload_csv is not None:
df = pd.read_csv(upload_csv)
st.session_state['df'] = df
st.experimental_rerun()
if st.session_state['plugin'] == "π Talk with your DATA":
if st.button('ππ Remove DATA from context'):
if 'df' in st.session_state:
del st.session_state['df']
del st.session_state['plugin']
st.experimental_rerun()
# DOCUMENTS PLUGIN
if st.session_state['plugin'] == "π Talk with your DOCUMENTS" and 'documents' not in st.session_state:
with st.expander("π Talk with your DOCUMENT", expanded=True):
upload_pdf = st.file_uploader("Upload your DOCUMENT", type=['txt', 'pdf', 'docx'], accept_multiple_files=True)
if upload_pdf is not None and st.button('πβ
Load Documents'):
documents = []
with st.spinner('π¨ Reading documents...'):
for upload_pdf in upload_pdf:
print(upload_pdf.type)
if upload_pdf.type == 'text/plain':
documents += [upload_pdf.read().decode()]
elif upload_pdf.type == 'application/pdf':
with pdfplumber.open(upload_pdf) as pdf:
documents += [page.extract_text() for page in pdf.pages]
elif upload_pdf.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
text = docx2txt.process(upload_pdf)
documents += [text]
st.session_state['documents'] = documents
# Split documents into chunks
with st.spinner('π¨ Creating vectorstore...'):
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.create_documents(documents)
# Select embeddings
embeddings = st.session_state['hf']
# Create a vectorstore from documents
random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)
with st.spinner('π¨ Saving vectorstore...'):
# save vectorstore
db.persist()
#create .zip file of directory to download
shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
# save in session state and download
st.session_state['db'] = "./chroma_db_" + random_str + ".zip"
with st.spinner('π¨ Creating QA chain...'):
# Create retriever interface
retriever = db.as_retriever()
# Create QA chain
qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
st.session_state['pdf'] = qa
st.experimental_rerun()
if st.session_state['plugin'] == "π Talk with your DOCUMENTS":
if 'db' in st.session_state:
# leave ./ from name for download
file_name = st.session_state['db'][2:]
st.download_button(
label="π© Download vectorstore",
data=open(file_name, 'rb').read(),
file_name=file_name,
mime='application/zip'
)
if st.button('ππ Remove PDF from context'):
if 'pdf' in st.session_state:
del st.session_state['db']
del st.session_state['pdf']
del st.session_state['documents']
del st.session_state['plugin']
st.experimental_rerun()
# AUDIO PLUGIN
if st.session_state['plugin'] == "π§ Talk with your AUDIO" and 'audio' not in st.session_state:
with st.expander("π Talk with your AUDIO", expanded=True):
f = st.file_uploader("Upload your AUDIO", type=['wav', 'mp3'])
if f is not None:
if f.type == 'audio/mpeg':
#convert mp3 to wav
with st.spinner('π¨ Converting mp3 to wav...'):
#save mp3
with open('audio.mp3', 'wb') as out:
out.write(f.read())
#convert to wav
sound = AudioSegment.from_mp3("audio.mp3")
sound.export("audio.wav", format="wav")
file_name = 'audio.wav'
else:
with open(f.name, 'wb') as out:
out.write(f.read())
bytes_data = f.read()
file_name = f.name
r = sr.Recognizer()
#Given audio file must be a filename string or a file-like object
with st.spinner('π¨ Reading audio...'):
with sr.AudioFile(file_name) as source:
# listen for the data (load audio to memory)
audio_data = r.record(source)
# recognize (convert from speech to text)
text = r.recognize_google(audio_data)
data = [text]
# data = query(bytes_data)
with st.spinner('π Creating Vectorstore...'):
#split text into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.create_documents(text)
embeddings = st.session_state['hf']
# Create a vectorstore from documents
random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)
# save vectorstore
with st.spinner('π Saving Vectorstore...'):
db.persist()
#create .zip file of directory to download
shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
# save in session state and download
st.session_state['db'] = "./chroma_db_" + random_str + ".zip"
with st.spinner('π Creating QA chain...'):
# Create retriever interface
retriever = db.as_retriever()
# Create QA chain
qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
st.session_state['audio'] = qa
st.session_state['audio_text'] = text
st.experimental_rerun()
if st.session_state['plugin'] == "π§ Talk with your AUDIO":
if 'db' in st.session_state:
# leave ./ from name for download
file_name = st.session_state['db'][2:]
st.download_button(
label="π© Download vectorstore",
data=open(file_name, 'rb').read(),
file_name=file_name,
mime='application/zip'
)
if st.button('ππ Remove AUDIO from context'):
if 'audio' in st.session_state:
del st.session_state['db']
del st.session_state['audio']
del st.session_state['audio_text']
del st.session_state['plugin']
st.experimental_rerun()
# YT PLUGIN
if st.session_state['plugin'] == "π₯ Talk with YT video" and 'yt' not in st.session_state:
with st.expander("π₯ Talk with YT video", expanded=True):
yt_url = st.text_input("1.πΊ Enter a YouTube URL")
yt_url2 = st.text_input("2.πΊ Enter a YouTube URL")
yt_url3 = st.text_input("3.πΊ Enter a YouTube URL")
if yt_url is not None and st.button('π₯β
Add YouTube video to context'):
if yt_url != "":
video = 1
yt_url = yt_url.split("=")[1]
if yt_url2 != "":
yt_url2 = yt_url2.split("=")[1]
video = 2
if yt_url3 != "":
yt_url3 = yt_url3.split("=")[1]
video = 3
text_yt = []
text_list = []
for i in range(video):
with st.spinner(f'π₯ Extracting TEXT from YouTube video {str(i)} ...'):
#get en subtitles
transcript_list = YouTubeTranscriptApi.list_transcripts(yt_url)
transcript_en = None
last_language = ""
for transcript in transcript_list:
if transcript.language_code == 'en':
transcript_en = transcript
break
else:
last_language = transcript.language_code
if transcript_en is None:
transcript_en = transcript_list.find_transcript([last_language])
transcript_en = transcript_en.translate('en')
text = transcript_en.fetch()
text_yt.append(text)
for i in range(len(text_yt)):
for j in range(len(text_yt[i])):
text_list.append(text_yt[i][j]['text'])
# creating a vectorstore
with st.spinner('π₯ Creating Vectorstore...'):
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.create_documents(text_list)
# Select embeddings
embeddings = st.session_state['hf']
# Create a vectorstore from documents
random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)
with st.spinner('π₯ Saving Vectorstore...'):
# save vectorstore
db.persist()
#create .zip file of directory to download
shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
# save in session state and download
st.session_state['db'] = "./chroma_db_" + random_str + ".zip"
with st.spinner('π₯ Creating QA chain...'):
# Create retriever interface
retriever = db.as_retriever()
# Create QA chain
qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
st.session_state['yt'] = qa
st.session_state['yt_text'] = text_list
st.experimental_rerun()
if st.session_state['plugin'] == "π₯ Talk with YT video":
if 'db' in st.session_state:
# leave ./ from name for download
file_name = st.session_state['db'][2:]
st.download_button(
label="π© Download vectorstore",
data=open(file_name, 'rb').read(),
file_name=file_name,
mime='application/zip'
)
if st.button('ππ₯ Remove YT video from context'):
if 'yt' in st.session_state:
del st.session_state['db']
del st.session_state['yt']
del st.session_state['yt_text']
del st.session_state['plugin']
st.experimental_rerun()
# WEBSITE PLUGIN
if st.session_state['plugin'] == "π Talk with Website" and 'web_sites' not in st.session_state:
with st.expander("π Talk with Website", expanded=True):
web_url = st.text_area("π Enter a website URLs , one for each line")
if web_url is not None and st.button('πβ
Add website to context'):
if web_url != "":
text = []
#max 10 websites
with st.spinner('π Extracting TEXT from Websites ...'):
for url in web_url.split("\n")[:10]:
page = requests.get(url)
soup = BeautifulSoup(page.content, 'html.parser')
text.append(soup.get_text())
# creating a vectorstore
with st.spinner('π Creating Vectorstore...'):
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.create_documents(text)
# Select embeddings
embeddings = st.session_state['hf']
# Create a vectorstore from documents
random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)
with st.spinner('π Saving Vectorstore...'):
# save vectorstore
db.persist()
#create .zip file of directory to download
shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
# save in session state and download
st.session_state['db'] = "./chroma_db_" + random_str + ".zip"
with st.spinner('π Creating QA chain...'):
# Create retriever interface
retriever = db.as_retriever()
# Create QA chain
qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
st.session_state['web_sites'] = qa
st.session_state['web_text'] = text
st.experimental_rerun()
if st.session_state['plugin'] == "π Talk with Website":
if 'db' in st.session_state:
# leave ./ from name for download
file_name = st.session_state['db'][2:]
st.download_button(
label="π© Download vectorstore",
data=open(file_name, 'rb').read(),
file_name=file_name,
mime='application/zip'
)
if st.button('ππ Remove Website from context'):
if 'web_sites' in st.session_state:
del st.session_state['db']
del st.session_state['web_sites']
del st.session_state['web_text']
del st.session_state['plugin']
st.experimental_rerun()
# UPLOAD PREVIUS VECTORSTORE
if st.session_state['plugin'] == "πΎ Upload saved VectorStore" and 'old_db' not in st.session_state:
with st.expander("πΎ Upload saved VectorStore", expanded=True):
db_file = st.file_uploader("Upload a saved VectorStore", type=["zip"])
if db_file is not None and st.button('β
πΎ Add saved VectorStore to context'):
if db_file != "":
with st.spinner('πΎ Extracting VectorStore...'):
# unzip file in a new directory
with ZipFile(db_file, 'r') as zipObj:
# Extract all the contents of zip file in different directory
random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
zipObj.extractall("chroma_db_" + random_str)
# save in session state the path of the directory
st.session_state['old_db'] = "chroma_db_" + random_str
hf = st.session_state['hf']
# Create retriever interface
db = Chroma("chroma_db_" + random_str, embedding_function=hf)
with st.spinner('πΎ Creating QA chain...'):
retriever = db.as_retriever()
# Create QA chain
qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
st.session_state['old_db'] = qa
st.experimental_rerun()
if st.session_state['plugin'] == "πΎ Upload saved VectorStore":
if st.button('ππΎ Remove VectorStore from context'):
if 'old_db' in st.session_state:
del st.session_state['old_db']
del st.session_state['plugin']
st.experimental_rerun()
# END OF PLUGIN
add_vertical_space(4)
if 'hf_email' in st.session_state:
if st.button('π Logout'):
keys = list(st.session_state.keys())
for key in keys:
del st.session_state[key]
st.experimental_rerun()
export_chat()
add_vertical_space(5)
##### End of sidebar
# User input
# Layout of input/response containers
input_container = st.container()
response_container = st.container()
data_view_container = st.container()
loading_container = st.container()
## Applying the user input box
with input_container:
input_text = st.chat_input("π§βπ» Write here π", key="input")
with data_view_container:
if 'df' in st.session_state:
with st.expander("π€ View your **DATA**"):
st.data_editor(st.session_state['df'], use_container_width=True)
if 'pdf' in st.session_state:
with st.expander("π€ View your **DOCUMENTs**"):
st.write(st.session_state['documents'])
if 'audio' in st.session_state:
with st.expander("π€ View your **AUDIO**"):
st.write(st.session_state['audio_text'])
if 'yt' in st.session_state:
with st.expander("π€ View your **YT video**"):
st.write(st.session_state['yt_text'])
if 'web_text' in st.session_state:
with st.expander("π€ View the **Website content**"):
st.write(st.session_state['web_text'])
if 'old_db' in st.session_state:
with st.expander("π View your **saved VectorStore**"):
st.success("π VectorStore loaded")
if 'god_mode_source' in st.session_state:
with st.expander("π View source"):
for s in st.session_state['god_mode_source']:
st.markdown("- " + s)
# Response output
## Function for taking user prompt as input followed by producing AI generated responses
def generate_response(prompt):
final_prompt = ""
make_better = True
source = ""
with loading_container:
# FOR DEVELOPMENT PLUGIN
# if st.session_state['plugin'] == "π PLUGIN NAME" and 'PLUGIN DB' in st.session_state:
# with st.spinner('π Using PLUGIN NAME...'):
# solution = st.session_state['PLUGIN DB']({"query": prompt})
# final_prompt = YourCustomPrompt(prompt, context)
if st.session_state['plugin'] == "π Talk with your DATA" and 'df' in st.session_state:
#get only last message
context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
if prompt.find('python') != -1 or prompt.find('Code') != -1 or prompt.find('code') != -1 or prompt.find('Python') != -1:
with st.spinner('π Using tool for python code...'):
solution = "\n```python\n"
solution += st.session_state['df'].sketch.howto(prompt, call_display=False)
solution += "\n```\n\n"
final_prompt = prompt4Code(prompt, context, solution)
else:
with st.spinner('π Using tool to get information...'):
solution = st.session_state['df'].sketch.ask(prompt, call_display=False)
final_prompt = prompt4Data(prompt, context, solution)
elif st.session_state['plugin'] == "π Talk with your DOCUMENTS" and 'pdf' in st.session_state:
#get only last message
context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
with st.spinner('π Using tool to get information...'):
result = st.session_state['pdf']({"query": prompt})
solution = result["result"]
if len(solution.split()) > 110:
make_better = False
final_prompt = solution
if 'source_documents' in result and len(result["source_documents"]) > 0:
final_prompt += "\n\nβ
Source:\n"
for d in result["source_documents"]:
final_prompt += "- " + str(d) + "\n"
else:
final_prompt = prompt4Context(prompt, context, solution)
if 'source_documents' in result and len(result["source_documents"]) > 0:
source += "\n\nβ
Source:\n"
for d in result["source_documents"]:
source += "- " + str(d) + "\n"
elif st.session_state['plugin'] == "π§ GOD MODE" and 'god_mode' in st.session_state:
#get only last message
context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
with st.spinner('π Using tool to get information...'):
result = st.session_state['god_mode']({"query": prompt})
solution = result["result"]
if len(solution.split()) > 110:
make_better = False
final_prompt = solution
if 'source_documents' in result and len(result["source_documents"]) > 0:
final_prompt += "\n\nβ
Source:\n"
for d in result["source_documents"]:
final_prompt += "- " + str(d) + "\n"
else:
final_prompt = prompt4Context(prompt, context, solution)
if 'source_documents' in result and len(result["source_documents"]) > 0:
source += "\n\nβ
Source:\n"
for d in result["source_documents"]:
source += "- " + str(d) + "\n"
elif st.session_state['plugin'] == "π Talk with Website" and 'web_sites' in st.session_state:
#get only last message
context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
with st.spinner('π Using tool to get information...'):
result = st.session_state['web_sites']({"query": prompt})
solution = result["result"]
if len(solution.split()) > 110:
make_better = False
final_prompt = solution
if 'source_documents' in result and len(result["source_documents"]) > 0:
final_prompt += "\n\nβ
Source:\n"
for d in result["source_documents"]:
final_prompt += "- " + str(d) + "\n"
else:
final_prompt = prompt4Context(prompt, context, solution)
if 'source_documents' in result and len(result["source_documents"]) > 0:
source += "\n\nβ
Source:\n"
for d in result["source_documents"]:
source += "- " + str(d) + "\n"
elif st.session_state['plugin'] == "πΎ Upload saved VectorStore" and 'old_db' in st.session_state:
#get only last message
context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
with st.spinner('π Using tool to get information...'):
result = st.session_state['old_db']({"query": prompt})
solution = result["result"]
if len(solution.split()) > 110:
make_better = False
final_prompt = solution
if 'source_documents' in result and len(result["source_documents"]) > 0:
final_prompt += "\n\nβ
Source:\n"
for d in result["source_documents"]:
final_prompt += "- " + str(d) + "\n"
else:
final_prompt = prompt4Context(prompt, context, solution)
if 'source_documents' in result and len(result["source_documents"]) > 0:
source += "\n\nβ
Source:\n"
for d in result["source_documents"]:
source += "- " + str(d) + "\n"
elif st.session_state['plugin'] == "π§ Talk with your AUDIO" and 'audio' in st.session_state:
#get only last message
context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
with st.spinner('π Using tool to get information...'):
result = st.session_state['audio']({"query": prompt})
solution = result["result"]
if len(solution.split()) > 110:
make_better = False
final_prompt = solution
if 'source_documents' in result and len(result["source_documents"]) > 0:
final_prompt += "\n\nβ
Source:\n"
for d in result["source_documents"]:
final_prompt += "- " + str(d) + "\n"
else:
final_prompt = prompt4Audio(prompt, context, solution)
if 'source_documents' in result and len(result["source_documents"]) > 0:
source += "\n\nβ
Source:\n"
for d in result["source_documents"]:
source += "- " + str(d) + "\n"
elif st.session_state['plugin'] == "π₯ Talk with YT video" and 'yt' in st.session_state:
context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
with st.spinner('π Using tool to get information...'):
result = st.session_state['yt']({"query": prompt})
solution = result["result"]
if len(solution.split()) > 110:
make_better = False
final_prompt = solution
if 'source_documents' in result and len(result["source_documents"]) > 0:
final_prompt += "\n\nβ
Source:\n"
for d in result["source_documents"]:
final_prompt += "- " + str(d) + "\n"
else:
final_prompt = prompt4YT(prompt, context, solution)
if 'source_documents' in result and len(result["source_documents"]) > 0:
source += "\n\nβ
Source:\n"
for d in result["source_documents"]:
source += "- " + str(d) + "\n"
else:
#get last message if exists
if len(st.session_state['past']) == 1:
context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
else:
context = f"User: {st.session_state['past'][-2]}\nBot: {st.session_state['generated'][-2]}\nUser: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
if 'web_search' in st.session_state:
if st.session_state['web_search'] == "True":
with st.spinner('π Using internet to get information...'):
internet_result = ""
internet_answer = ""
with DDGS() as ddgs:
ddgs_gen = ddgs.text(prompt, region=st.session_state['region'], safesearch=st.session_state['safesearch'], timelimit=st.session_state['timelimit'])
for r in islice(ddgs_gen, st.session_state['max_results']):
internet_result += str(r) + "\n\n"
fast_answer = ddgs.answers(prompt)
for r in islice(fast_answer, 2):
internet_answer += str(r) + "\n\n"
final_prompt = prompt4conversationInternet(prompt, context, internet_result, internet_answer)
else:
final_prompt = prompt4conversation(prompt, context)
else:
final_prompt = prompt4conversation(prompt, context)
if make_better:
with st.spinner('π Generating response...'):
print(final_prompt)
response = st.session_state['chatbot'].chat(final_prompt, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, top_k=top_k, max_new_tokens=max_new_tokens)
response += source
else:
print(final_prompt)
response = final_prompt
return response
## Conditional display of AI generated responses as a function of user provided prompts
with response_container:
if input_text and 'hf_email' in st.session_state and 'hf_pass' in st.session_state:
response = generate_response(input_text)
st.session_state.past.append(input_text)
st.session_state.generated.append(response)
#print message in normal order, frist user then bot
if 'generated' in st.session_state:
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])):
with st.chat_message(name="user"):
st.markdown(st.session_state['past'][i])
with st.chat_message(name="assistant"):
if len(st.session_state['generated'][i].split("β
Source:")) > 1:
source = st.session_state['generated'][i].split("β
Source:")[1]
mess = st.session_state['generated'][i].split("β
Source:")[0]
st.markdown(mess)
with st.expander("π Source of message number " + str(i+1)):
st.markdown(source)
else:
st.markdown(st.session_state['generated'][i])
st.markdown('', unsafe_allow_html=True)
else:
st.info("π Hey , we are very happy to see you here π€")
st.info("π Please Login to continue, click on top left corner to login π")
st.error("π If you are not registered on Hugging Face, please register first and then login π€")
|