File size: 53,212 Bytes
93f3688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
import io
import random
import shutil
import string
from zipfile import ZipFile
import streamlit as st
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from hugchat import hugchat
from hugchat.login import Login
import pandas as pd
import asyncio
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
import sketch
from langchain.text_splitter import CharacterTextSplitter
from promptTemplate import prompt4conversation, prompt4Data, prompt4Code, prompt4Context, prompt4Audio, prompt4YT
from promptTemplate import prompt4conversationInternet
# FOR DEVELOPMENT NEW PLUGIN 
# from promptTemplate import yourPLUGIN
from exportchat import export_chat
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from HuggingChatAPI import HuggingChat
from langchain.embeddings import HuggingFaceHubEmbeddings
from youtube_transcript_api import YouTubeTranscriptApi
import requests
from bs4 import BeautifulSoup
import speech_recognition as sr
import pdfplumber
import docx2txt
from duckduckgo_search import DDGS
from itertools import islice
from os import path
from pydub import AudioSegment
import os


hf = None
repo_id = "sentence-transformers/all-mpnet-base-v2"

if 'hf_token' in st.session_state:
    if 'hf' not in st.session_state:
        hf = HuggingFaceHubEmbeddings(
            repo_id=repo_id,
            task="feature-extraction",
            huggingfacehub_api_token=st.session_state['hf_token'],
        ) # type: ignore
        st.session_state['hf'] = hf



st.set_page_config(
    page_title="Talk with ToastGPTπŸ’¬", page_icon="βœ…", layout="wide", initial_sidebar_state="expanded"
)

st.markdown('<style>.css-w770g5{\
            width: 100%;}\
            .css-b3z5c9{    \
            width: 100%;}\
            .stButton>button{\
            width: 100%;}\
            .stDownloadButton>button{\
            width: 100%;}\
            </style>', unsafe_allow_html=True)






# Sidebar contents for logIN, choose plugin, and export chat
with st.sidebar:
    st.title("πŸ€—πŸ’¬ Product Description Masterpiece")
    
    if 'hf_email' not in st.session_state or 'hf_pass' not in st.session_state:
        with st.expander("ℹ️ Login in Hugging Face", expanded=True):
            st.write("⚠️ You need to login in Hugging Face to use this app. You can register [here](https://huggingface.co/join).")
            st.header('Hugging Face Login')
            hf_email = st.text_input('Enter E-mail:')
            hf_pass = st.text_input('Enter password:', type='password')
            hf_token = st.text_input('Enter API Token:', type='password')
            if st.button('Login πŸš€') and hf_email and hf_pass and hf_token: 
                with st.spinner('πŸš€ Logging in...'):
                    st.session_state['hf_email'] = hf_email
                    st.session_state['hf_pass'] = hf_pass
                    st.session_state['hf_token'] = hf_token

                    try:
                    
                        sign = Login(st.session_state['hf_email'], st.session_state['hf_pass'])
                        cookies = sign.login()
                        chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
                    except Exception as e:
                        st.error(e)
                        st.info("⚠️ Please check your credentials and try again.")
                        st.error("⚠️ dont abuse the ToastGPT")
                        st.warning("⚠️ If you don't have an account, you can register [here](https://huggingface.co/join).")
                        from time import sleep
                        sleep(3)
                        del st.session_state['hf_email']
                        del st.session_state['hf_pass']
                        del st.session_state['hf_token']
                        st.experimental_rerun()

                    st.session_state['chatbot'] = chatbot

                    id = st.session_state['chatbot'].new_conversation()
                    st.session_state['chatbot'].change_conversation(id)

                    st.session_state['conversation'] = id
                    # Generate empty lists for generated and past.
                    ## generated stores AI generated responses
                    if 'generated' not in st.session_state:
                        st.session_state['generated'] = ["I'm **ToastGPT**, How may I help you ? "]
                    ## past stores User's questions
                    if 'past' not in st.session_state:
                        st.session_state['past'] = ['Hi!']

                    st.session_state['LLM'] =  HuggingChat(email=st.session_state['hf_email'], psw=st.session_state['hf_pass'])
                    
                    st.experimental_rerun()
                    

    else:
        with st.expander("ℹ️ Advanced Settings"):
            #temperature: Optional[float]. Default is 0.5
            #top_p: Optional[float]. Default is 0.95
            #repetition_penalty: Optional[float]. Default is 1.2
            #top_k: Optional[int]. Default is 50
            #max_new_tokens: Optional[int]. Default is 1024

            temperature = st.slider('🌑 Temperature', min_value=0.1, max_value=1.0, value=0.5, step=0.01)
            top_p = st.slider('πŸ’‘ Top P', min_value=0.1, max_value=1.0, value=0.95, step=0.01)
            repetition_penalty = st.slider('πŸ–Œ Repetition Penalty', min_value=1.0, max_value=2.0, value=1.2, step=0.01)
            top_k = st.slider('❄️ Top K', min_value=1, max_value=100, value=50, step=1)
            max_new_tokens = st.slider('πŸ“ Max New Tokens', min_value=1, max_value=1024, value=1024, step=1)
    

        # FOR DEVELOPMENT NEW PLUGIN YOU MUST ADD IT HERE INTO THE LIST 
        # YOU NEED ADD THE NAME AT 144 LINE

        #plugins for conversation
        plugins = ["πŸ›‘ No PLUGIN","🌐 Web Search", "πŸ”— Talk with Website" , "πŸ“‹ Talk with your DATA", "πŸ“ Talk with your DOCUMENTS", "🎧 Talk with your AUDIO", "πŸŽ₯ Talk with YT video", "🧠 GOD MODE" ,"πŸ’Ύ Upload saved VectorStore"]
        if 'plugin' not in st.session_state:
            st.session_state['plugin'] = st.selectbox('πŸ”Œ Plugins', plugins, index=0)
        else:
            if st.session_state['plugin'] == "πŸ›‘ No PLUGIN":
                st.session_state['plugin'] = st.selectbox('πŸ”Œ Plugins', plugins, index=plugins.index(st.session_state['plugin']))


# FOR DEVELOPMENT NEW PLUGIN FOLLOW THIS TEMPLATE
# PLUGIN TEMPLATE
# if st.session_state['plugin'] == "πŸ”Œ PLUGIN NAME" and 'PLUGIN NAME' not in st.session_state:
#     # PLUGIN SETTINGS
#     with st.expander("πŸ”Œ PLUGIN NAME Settings", expanded=True):
#         if 'PLUGIN NAME' not in st.session_state or st.session_state['PLUGIN NAME'] == False:
#             # PLUGIN CODE
#             st.session_state['PLUGIN NAME'] = True
#         elif st.session_state['PLUGIN NAME'] == True:
#             # PLUGIN CODE
#             if st.button('πŸ”Œ Disable PLUGIN NAME'):
#               st.session_state['plugin'] = "πŸ›‘ No PLUGIN"
#               st.session_state['PLUGIN NAME'] = False
#               del ALL SESSION STATE VARIABLES RELATED TO PLUGIN
#               st.experimental_rerun()
#       # PLUGIN UPLOADER
#       if st.session_state['PLUGIN NAME'] == True:
#           with st.expander("πŸ”Œ PLUGIN NAME Uploader", expanded=True):
#               # PLUGIN UPLOADER CODE
#               load file
#               if load file and st.button('πŸ”Œ Upload PLUGIN NAME'):
#                   qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
#                   st.session_state['PLUGIN DB'] = qa
#                   st.experimental_rerun()
# 



# WEB SEARCH PLUGIN
        if st.session_state['plugin'] == "🌐 Web Search" and 'web_search' not in st.session_state:
            # web search settings
            with st.expander("🌐 Web Search Settings", expanded=True):
                if 'web_search' not in st.session_state or st.session_state['web_search'] == False:
                    reg = ['us-en', 'uk-en', 'it-it']
                    sf = ['on', 'moderate', 'off']
                    tl = ['d', 'w', 'm', 'y']
                    if 'region' not in st.session_state:
                        st.session_state['region'] = st.selectbox('πŸ—Ί Region', reg, index=1)
                    else:
                        st.session_state['region'] = st.selectbox('πŸ—Ί Region', reg, index=reg.index(st.session_state['region']))
                    if 'safesearch' not in st.session_state:
                        st.session_state['safesearch'] = st.selectbox('🚨 Safe Search', sf, index=1)
                    else:
                        st.session_state['safesearch'] = st.selectbox('🚨 Safe Search', sf, index=sf.index(st.session_state['safesearch']))
                    if 'timelimit' not in st.session_state:
                        st.session_state['timelimit'] = st.selectbox('πŸ“… Time Limit', tl, index=1)
                    else:
                        st.session_state['timelimit'] = st.selectbox('πŸ“… Time Limit', tl, index=tl.index(st.session_state['timelimit']))
                    if 'max_results' not in st.session_state:
                        st.session_state['max_results'] = st.slider('πŸ“Š Max Results', min_value=1, max_value=5, value=2, step=1)
                    else:
                        st.session_state['max_results'] = st.slider('πŸ“Š Max Results', min_value=1, max_value=5, value=st.session_state['max_results'], step=1)
                    if st.button('🌐 Save change'):
                        st.session_state['web_search'] = "True"
                        st.experimental_rerun()

        elif st.session_state['plugin'] == "🌐 Web Search" and st.session_state['web_search'] == 'True':
            with st.expander("🌐 Web Search Settings", expanded=True):
                st.write('πŸš€ Web Search is enabled')
                st.write('πŸ—Ί Region: ', st.session_state['region'])
                st.write('🚨 Safe Search: ', st.session_state['safesearch'])
                st.write('πŸ“… Time Limit: ', st.session_state['timelimit'])
                if st.button('πŸŒπŸ›‘ Disable Web Search'):
                    del st.session_state['web_search']
                    del st.session_state['region']
                    del st.session_state['safesearch']
                    del st.session_state['timelimit']
                    del st.session_state['max_results']
                    del st.session_state['plugin']
                    st.experimental_rerun()

# GOD MODE PLUGIN
        if st.session_state['plugin'] == "🧠 GOD MODE" and 'god_mode' not in st.session_state:
            with st.expander("🧠 GOD MODE Settings", expanded=True):
                if 'god_mode' not in st.session_state or st.session_state['god_mode'] == False:
                    topic = st.text_input('πŸ”Ž Topic', "What is ToastGPT?")
                    web_result = st.checkbox('🌐 Web Search', value=True, disabled=True)
                    yt_result = st.checkbox('πŸŽ₯ YT Search', value=True, disabled=True)
                    website_result = st.checkbox('πŸ”— Website Search', value=True, disabled=True)
                    deep_of_search = st.slider('πŸ“Š Deep of Search', min_value=1, max_value=100, value=2, step=1) 
                    if st.button('πŸ§ βœ… Give knowledge to the model'):
                        full_text = []
                        links = []
                        news = []
                        yt_ids = []
                        source = []
                        if web_result == True:
                            internet_result = ""
                            internet_answer = ""
                            with DDGS() as ddgs:
                                with st.spinner('🌐 Searching on the web...'):
                                    ddgs_gen = ddgs.text(topic, region="us-en")
                                    for r in islice(ddgs_gen, deep_of_search):
                                        l = r['href']
                                        source.append(l)
                                        links.append(l)
                                        internet_result += str(r) + "\n\n"
                                        
                                    fast_answer = ddgs.news(topic)
                                    for r in islice(fast_answer, deep_of_search):
                                        internet_answer += str(r) + "\n\n" 
                                        l = r['url']
                                        source.append(l)
                                        news.append(r)

                                
                            full_text.append(internet_result)
                            full_text.append(internet_answer)

                        if yt_result == True:
                            with st.spinner('πŸŽ₯ Searching on YT...'):
                                from youtubesearchpython import VideosSearch
                                videosSearch = VideosSearch(topic, limit = deep_of_search)
                                yt_result = videosSearch.result()
                                for i in yt_result['result']: # type: ignore
                                    duration = i['duration'] # type: ignore
                                    duration = duration.split(':')
                                    if len(duration) == 3:
                                        #skip videos longer than 1 hour
                                        if int(duration[0]) > 1:
                                            continue
                                    if len(duration) == 2:
                                        #skip videos longer than 30 minutes
                                        if int(duration[0]) > 30:
                                            continue
                                    yt_ids.append(i['id']) # type: ignore
                                    source.append("https://www.youtube.com/watch?v="+i['id']) # type: ignore
                                    full_text.append(i['title']) # type: ignore


                        if website_result == True:
                            for l in links:
                                try:
                                    with st.spinner(f'πŸ‘¨β€πŸ’» Scraping website : {l}'):
                                        r = requests.get(l)
                                        soup = BeautifulSoup(r.content, 'html.parser')
                                        full_text.append(soup.get_text()+"\n\n")
                                except:
                                    pass

                        for id in yt_ids:
                            try:
                                yt_video_txt= []
                                with st.spinner(f'πŸ‘¨β€πŸ’» Scraping YT video : {id}'):
                                    transcript_list = YouTubeTranscriptApi.list_transcripts(id)
                                    transcript_en = None
                                    last_language = ""
                                    for transcript in transcript_list:
                                        if transcript.language_code == 'en':
                                            transcript_en = transcript
                                            break
                                        else:
                                            last_language = transcript.language_code
                                    if transcript_en is None:   
                                        transcript_en = transcript_list.find_transcript([last_language])
                                        transcript_en = transcript_en.translate('en')

                                    text = transcript_en.fetch()
                                    yt_video_txt.append(text)

                                    for i in range(len(yt_video_txt)):
                                        for j in range(len(yt_video_txt[i])):
                                            full_text.append(yt_video_txt[i][j]['text'])


                            except:
                                pass

                        with st.spinner('🧠 Building vectorstore with knowledge...'):
                            full_text = "\n".join(full_text)
                            st.session_state['god_text'] = [full_text]
                            text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
                            texts = text_splitter.create_documents([full_text])
                            # Select embeddings
                            embeddings = st.session_state['hf']
                            # Create a vectorstore from documents
                            random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
                            db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)

                        with st.spinner('πŸ”¨ Saving vectorstore...'):
                            # save vectorstore
                            db.persist()
                            #create .zip file of directory to download
                            shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
                            # save in session state and download
                            st.session_state['db'] = "./chroma_db_" + random_str + ".zip" 
                        
                        with st.spinner('πŸ”¨ Creating QA chain...'):
                            # Create retriever interface
                            retriever = db.as_retriever()
                            # Create QA chain
                            qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
                            st.session_state['god_mode'] = qa
                            st.session_state['god_mode_source'] = source
                            st.session_state['god_mode_info'] = "🧠 GOD MODE have builded a vectorstore about **" + topic + f"**. The knowledge is based on\n- {len(news)} newsπŸ—ž\n- {len(yt_ids)} YT videosπŸ“Ί\n- {len(links)} websites🌐 \n"
                        
                        st.experimental_rerun()
                                

        if st.session_state['plugin'] == "🧠 GOD MODE" and 'god_mode' in st.session_state:
            with st.expander("**βœ… GOD MODE is enabled πŸš€**", expanded=True):
                st.markdown(st.session_state['god_mode_info'])
                if 'db' in st.session_state:
                    # leave ./ from name for download
                    file_name = st.session_state['db'][2:]
                    st.download_button(
                        label="πŸ“© Download vectorstore",
                        data=open(file_name, 'rb').read(),
                        file_name=file_name,
                        mime='application/zip'
                    )
                if st.button('πŸ§ πŸ›‘ Disable GOD MODE'):
                    del st.session_state['god_mode']
                    del st.session_state['db']
                    del st.session_state['god_text']
                    del st.session_state['god_mode_info']
                    del st.session_state['god_mode_source']
                    del st.session_state['plugin']
                    st.experimental_rerun()
            

# DATA PLUGIN
        if st.session_state['plugin'] == "πŸ“‹ Talk with your DATA" and 'df' not in st.session_state:
            with st.expander("πŸ“‹ Talk with your DATA", expanded= True):
                upload_csv = st.file_uploader("Upload your CSV", type=['csv'])
                if upload_csv is not None:
                    df = pd.read_csv(upload_csv)
                    st.session_state['df'] = df
                    st.experimental_rerun()
        if st.session_state['plugin'] == "πŸ“‹ Talk with your DATA":
            if st.button('πŸ›‘πŸ“‹ Remove DATA from context'):
                if 'df' in st.session_state:
                    del st.session_state['df']
                del st.session_state['plugin']
                st.experimental_rerun()



# DOCUMENTS PLUGIN
        if st.session_state['plugin'] == "πŸ“ Talk with your DOCUMENTS" and 'documents' not in st.session_state:
            with st.expander("πŸ“ Talk with your DOCUMENT", expanded=True):  
                upload_pdf = st.file_uploader("Upload your DOCUMENT", type=['txt', 'pdf', 'docx'], accept_multiple_files=True)
                if upload_pdf is not None and st.button('πŸ“βœ… Load Documents'):
                    documents = []
                    with st.spinner('πŸ”¨ Reading documents...'):
                        for upload_pdf in upload_pdf:
                            print(upload_pdf.type)
                            if upload_pdf.type == 'text/plain':
                                documents += [upload_pdf.read().decode()]
                            elif upload_pdf.type == 'application/pdf':
                                with pdfplumber.open(upload_pdf) as pdf:
                                    documents += [page.extract_text() for page in pdf.pages]
                            elif upload_pdf.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
                                text = docx2txt.process(upload_pdf)
                                documents += [text]
                    st.session_state['documents'] = documents
                    # Split documents into chunks
                    with st.spinner('πŸ”¨ Creating vectorstore...'):
                        text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
                        texts = text_splitter.create_documents(documents)
                        # Select embeddings
                        embeddings = st.session_state['hf']
                        # Create a vectorstore from documents
                        random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
                        db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)

                    with st.spinner('πŸ”¨ Saving vectorstore...'):
                        # save vectorstore
                        db.persist()
                        #create .zip file of directory to download
                        shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
                        # save in session state and download
                        st.session_state['db'] = "./chroma_db_" + random_str + ".zip" 
                    
                    with st.spinner('πŸ”¨ Creating QA chain...'):
                        # Create retriever interface
                        retriever = db.as_retriever()
                        # Create QA chain
                        qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever,  return_source_documents=True)
                        st.session_state['pdf'] = qa

                    st.experimental_rerun()

        if st.session_state['plugin'] == "πŸ“ Talk with your DOCUMENTS":
            if 'db' in st.session_state:
                # leave ./ from name for download
                file_name = st.session_state['db'][2:]
                st.download_button(
                    label="πŸ“© Download vectorstore",
                    data=open(file_name, 'rb').read(),
                    file_name=file_name,
                    mime='application/zip'
                )
            if st.button('πŸ›‘πŸ“ Remove PDF from context'):
                if 'pdf' in st.session_state:
                    del st.session_state['db']
                    del st.session_state['pdf']
                    del st.session_state['documents']
                del st.session_state['plugin']
                    
                st.experimental_rerun()

# AUDIO PLUGIN
        if st.session_state['plugin'] == "🎧 Talk with your AUDIO" and 'audio' not in st.session_state:
            with st.expander("πŸŽ™ Talk with your AUDIO", expanded=True):
                f = st.file_uploader("Upload your AUDIO", type=['wav', 'mp3'])
                if f is not None:
                    if f.type == 'audio/mpeg':
                        #convert mp3 to wav
                        with st.spinner('πŸ”¨ Converting mp3 to wav...'):
                            #save mp3
                            with open('audio.mp3', 'wb') as out:
                                out.write(f.read())
                            #convert to wav
                            sound = AudioSegment.from_mp3("audio.mp3")
                            sound.export("audio.wav", format="wav")
                            file_name = 'audio.wav'
                    else:
                        with open(f.name, 'wb') as out:
                            out.write(f.read())
      
                        bytes_data = f.read()
                        file_name = f.name
                    
                    r = sr.Recognizer()
                    #Given audio file must be a filename string or a file-like object


                    with st.spinner('πŸ”¨ Reading audio...'):
                        with sr.AudioFile(file_name) as source:
                            # listen for the data (load audio to memory)
                            audio_data = r.record(source)
                            # recognize (convert from speech to text)
                            text = r.recognize_google(audio_data)
                    data = [text]
                    # data = query(bytes_data)
                    with st.spinner('πŸŽ™ Creating Vectorstore...'):

                        #split text into chunks
                        text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
                        texts = text_splitter.create_documents(text)

                        embeddings = st.session_state['hf']
                        # Create a vectorstore from documents
                        random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
                        db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)
                        # save vectorstore
                    
                    with st.spinner('πŸŽ™ Saving Vectorstore...'):
                        db.persist()
                        #create .zip file of directory to download
                        shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
                        # save in session state and download
                        st.session_state['db'] = "./chroma_db_" + random_str + ".zip" 

                    with st.spinner('πŸŽ™ Creating QA chain...'):
                        # Create retriever interface
                        retriever = db.as_retriever()
                        # Create QA chain
                        qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
                        st.session_state['audio'] = qa
                        st.session_state['audio_text'] = text
                    st.experimental_rerun()
                    
        if st.session_state['plugin'] == "🎧 Talk with your AUDIO":
            if 'db' in st.session_state:
                    # leave ./ from name for download
                    file_name = st.session_state['db'][2:]
                    st.download_button(
                        label="πŸ“© Download vectorstore",
                        data=open(file_name, 'rb').read(),
                        file_name=file_name,
                        mime='application/zip'
                    )
            if st.button('πŸ›‘πŸŽ™ Remove AUDIO from context'):
                if 'audio' in st.session_state:
                    del st.session_state['db']
                    del st.session_state['audio']
                    del st.session_state['audio_text']
                del st.session_state['plugin']
                st.experimental_rerun()


# YT PLUGIN
        if st.session_state['plugin'] == "πŸŽ₯ Talk with YT video" and 'yt' not in st.session_state:
            with st.expander("πŸŽ₯ Talk with YT video", expanded=True):
                yt_url = st.text_input("1.πŸ“Ί Enter a YouTube URL")
                yt_url2 = st.text_input("2.πŸ“Ί Enter a YouTube URL")
                yt_url3 = st.text_input("3.πŸ“Ί Enter a YouTube URL")
                if yt_url is not None and st.button('πŸŽ₯βœ… Add YouTube video to context'):
                    if yt_url != "":
                        video = 1
                        yt_url = yt_url.split("=")[1]
                        if yt_url2 != "":
                            yt_url2 = yt_url2.split("=")[1]
                            video = 2
                        if yt_url3 != "":
                            yt_url3 = yt_url3.split("=")[1]
                            video = 3

                        text_yt = []
                        text_list = []
                        for i in range(video):
                            with st.spinner(f'πŸŽ₯ Extracting TEXT from YouTube video {str(i)} ...'):
                                #get en subtitles
                                transcript_list = YouTubeTranscriptApi.list_transcripts(yt_url)
                                transcript_en = None
                                last_language = ""
                                for transcript in transcript_list:
                                    if transcript.language_code == 'en':
                                        transcript_en = transcript
                                        break
                                    else:
                                        last_language = transcript.language_code
                                if transcript_en is None:   
                                    transcript_en = transcript_list.find_transcript([last_language])
                                    transcript_en = transcript_en.translate('en')

                                text = transcript_en.fetch()
                                text_yt.append(text)

                        for i in range(len(text_yt)):
                            for j in range(len(text_yt[i])):
                                text_list.append(text_yt[i][j]['text'])
                        
                        # creating a vectorstore

                        with st.spinner('πŸŽ₯ Creating Vectorstore...'):
                            text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
                            texts = text_splitter.create_documents(text_list)
                            # Select embeddings
                            embeddings = st.session_state['hf']
                            # Create a vectorstore from documents
                            random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
                            db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)

                        with st.spinner('πŸŽ₯ Saving Vectorstore...'):
                            # save vectorstore
                            db.persist()
                            #create .zip file of directory to download
                            shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
                            # save in session state and download
                            st.session_state['db'] = "./chroma_db_" + random_str + ".zip" 

                        with st.spinner('πŸŽ₯ Creating QA chain...'):
                            # Create retriever interface
                            retriever = db.as_retriever()
                            # Create QA chain
                            qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
                            st.session_state['yt'] = qa
                            st.session_state['yt_text'] = text_list
                        st.experimental_rerun()

        if st.session_state['plugin'] == "πŸŽ₯ Talk with YT video":
            if 'db' in st.session_state:
                # leave ./ from name for download
                file_name = st.session_state['db'][2:]
                st.download_button(
                    label="πŸ“© Download vectorstore",
                    data=open(file_name, 'rb').read(),
                    file_name=file_name,
                    mime='application/zip'
                )

            if st.button('πŸ›‘πŸŽ₯ Remove YT video from context'):
                if 'yt' in st.session_state:
                    del st.session_state['db']
                    del st.session_state['yt']
                    del st.session_state['yt_text']
                del st.session_state['plugin']
                st.experimental_rerun()

# WEBSITE PLUGIN
        if st.session_state['plugin'] == "πŸ”— Talk with Website" and 'web_sites' not in st.session_state:
            with st.expander("πŸ”— Talk with Website", expanded=True):
                web_url = st.text_area("πŸ”— Enter a website URLs , one for each line")
                if web_url is not None and st.button('πŸ”—βœ… Add website to context'):
                    if web_url != "":
                        text = []
                        #max 10 websites
                        with st.spinner('πŸ”— Extracting TEXT from Websites ...'):
                            for url in web_url.split("\n")[:10]:
                                page = requests.get(url)
                                soup = BeautifulSoup(page.content, 'html.parser')
                                text.append(soup.get_text())
                            # creating a vectorstore

                        with st.spinner('πŸ”— Creating Vectorstore...'):
                            text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
                            texts = text_splitter.create_documents(text)
                            # Select embeddings
                            embeddings = st.session_state['hf']
                            # Create a vectorstore from documents
                            random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
                            db = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db_" + random_str)
                        
                        with st.spinner('πŸ”— Saving Vectorstore...'):
                            # save vectorstore
                            db.persist()
                            #create .zip file of directory to download
                            shutil.make_archive("./chroma_db_" + random_str, 'zip', "./chroma_db_" + random_str)
                            # save in session state and download
                            st.session_state['db'] = "./chroma_db_" + random_str + ".zip" 
                        
                        with st.spinner('πŸ”— Creating QA chain...'):
                            # Create retriever interface
                            retriever = db.as_retriever()
                            # Create QA chain
                            qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
                            st.session_state['web_sites'] = qa
                            st.session_state['web_text'] = text
                        st.experimental_rerun()
        
        if st.session_state['plugin'] == "πŸ”— Talk with Website":
            if 'db' in st.session_state:
                # leave ./ from name for download
                file_name = st.session_state['db'][2:]
                st.download_button(
                    label="πŸ“© Download vectorstore",
                    data=open(file_name, 'rb').read(),
                    file_name=file_name,
                    mime='application/zip'
                )

            if st.button('πŸ›‘πŸ”— Remove Website from context'):
                if 'web_sites' in st.session_state:
                    del st.session_state['db']
                    del st.session_state['web_sites']
                    del st.session_state['web_text']
                del st.session_state['plugin']
                st.experimental_rerun()

                            
# UPLOAD PREVIUS VECTORSTORE
        if st.session_state['plugin'] == "πŸ’Ύ Upload saved VectorStore" and 'old_db' not in st.session_state:
            with st.expander("πŸ’Ύ Upload saved VectorStore", expanded=True):
                db_file = st.file_uploader("Upload a saved VectorStore", type=["zip"])
                if db_file is not None and st.button('βœ…πŸ’Ύ Add saved VectorStore to context'):
                    if db_file != "":
                        with st.spinner('πŸ’Ύ Extracting VectorStore...'):
                            # unzip file in a new directory
                            with ZipFile(db_file, 'r') as zipObj:
                                # Extract all the contents of zip file in different directory
                                random_str = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
                                zipObj.extractall("chroma_db_" + random_str)
                            # save in session state the path of the directory
                            st.session_state['old_db'] = "chroma_db_" + random_str
                            hf = st.session_state['hf']
                            # Create retriever interface
                            db = Chroma("chroma_db_" + random_str, embedding_function=hf)

                        with st.spinner('πŸ’Ύ Creating QA chain...'):
                            retriever = db.as_retriever()
                            # Create QA chain
                            qa = RetrievalQA.from_chain_type(llm=st.session_state['LLM'], chain_type='stuff', retriever=retriever, return_source_documents=True)
                            st.session_state['old_db'] = qa
                            st.experimental_rerun()

        if st.session_state['plugin'] == "πŸ’Ύ Upload saved VectorStore":
            if st.button('πŸ›‘πŸ’Ύ Remove VectorStore from context'):
                if 'old_db' in st.session_state:
                    del st.session_state['old_db']
                del st.session_state['plugin']
                st.experimental_rerun()


# END OF PLUGIN
    add_vertical_space(4)
    if 'hf_email' in st.session_state:
        if st.button('πŸ—‘ Logout'):
            keys = list(st.session_state.keys())
            for key in keys:
                del st.session_state[key]
            st.experimental_rerun()

    export_chat()
    add_vertical_space(5)

##### End of sidebar


# User input
# Layout of input/response containers
input_container = st.container()
response_container = st.container()
data_view_container = st.container()
loading_container = st.container()



## Applying the user input box
with input_container:
        input_text = st.chat_input("πŸ§‘β€πŸ’» Write here πŸ‘‡", key="input")

with data_view_container:
    if 'df' in st.session_state:
        with st.expander("πŸ€– View your **DATA**"):
            st.data_editor(st.session_state['df'], use_container_width=True)
    if 'pdf' in st.session_state:
        with st.expander("πŸ€– View your **DOCUMENTs**"):
            st.write(st.session_state['documents'])
    if 'audio' in st.session_state:
        with st.expander("πŸ€– View your **AUDIO**"):
            st.write(st.session_state['audio_text'])
    if 'yt' in st.session_state:
        with st.expander("πŸ€– View your **YT video**"):
            st.write(st.session_state['yt_text'])
    if 'web_text' in st.session_state:
        with st.expander("πŸ€– View the **Website content**"):
            st.write(st.session_state['web_text'])
    if 'old_db' in st.session_state:
        with st.expander("πŸ—‚ View your **saved VectorStore**"):
            st.success("πŸ“š VectorStore loaded")
    if 'god_mode_source' in st.session_state:
        with st.expander("🌍 View source"):
            for s in st.session_state['god_mode_source']:
                st.markdown("- " + s)

# Response output
## Function for taking user prompt as input followed by producing AI generated responses
def generate_response(prompt):
    final_prompt =  ""
    make_better = True
    source = ""

    with loading_container:

        # FOR DEVELOPMENT PLUGIN
        # if st.session_state['plugin'] == "πŸ”Œ PLUGIN NAME" and 'PLUGIN DB' in st.session_state:
        #     with st.spinner('πŸš€ Using PLUGIN NAME...'):
        #         solution = st.session_state['PLUGIN DB']({"query": prompt})
        #         final_prompt = YourCustomPrompt(prompt, context)
        

        if st.session_state['plugin'] == "πŸ“‹ Talk with your DATA" and 'df' in st.session_state:
            #get only last message
            context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            if prompt.find('python') != -1 or prompt.find('Code') != -1 or prompt.find('code') != -1 or prompt.find('Python') != -1:
                with st.spinner('πŸš€ Using tool for python code...'):
                    solution = "\n```python\n" 
                    solution += st.session_state['df'].sketch.howto(prompt, call_display=False)
                    solution += "\n```\n\n"
                    final_prompt = prompt4Code(prompt, context, solution)
            else:  
                with st.spinner('πŸš€ Using tool to get information...'):
                    solution = st.session_state['df'].sketch.ask(prompt, call_display=False)
                    final_prompt = prompt4Data(prompt, context, solution)


        elif st.session_state['plugin'] == "πŸ“ Talk with your DOCUMENTS" and 'pdf' in st.session_state:
            #get only last message
            context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            with st.spinner('πŸš€ Using tool to get information...'):
                result = st.session_state['pdf']({"query": prompt})
                solution = result["result"]
                if len(solution.split()) > 110:
                    make_better = False
                    final_prompt = solution
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        final_prompt += "\n\nβœ…Source:\n" 
                        for d in result["source_documents"]:
                            final_prompt += "- " + str(d) + "\n"
                else:
                    final_prompt = prompt4Context(prompt, context, solution)
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        source += "\n\nβœ…Source:\n"
                        for d in result["source_documents"]:
                            source += "- " + str(d) + "\n"


        elif st.session_state['plugin'] == "🧠 GOD MODE" and 'god_mode' in st.session_state:
            #get only last message
            context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            with st.spinner('πŸš€ Using tool to get information...'):
                result = st.session_state['god_mode']({"query": prompt})
                solution = result["result"]
                if len(solution.split()) > 110:
                    make_better = False
                    final_prompt = solution
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        final_prompt += "\n\nβœ…Source:\n" 
                        for d in result["source_documents"]:
                            final_prompt += "- " + str(d) + "\n"
                else:
                    final_prompt = prompt4Context(prompt, context, solution)
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        source += "\n\nβœ…Source:\n"
                        for d in result["source_documents"]:
                            source += "- " + str(d) + "\n"


        elif st.session_state['plugin'] == "πŸ”— Talk with Website" and 'web_sites' in st.session_state:
            #get only last message
            context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            with st.spinner('πŸš€ Using tool to get information...'):
                result = st.session_state['web_sites']({"query": prompt})
                solution = result["result"]
                if len(solution.split()) > 110:
                    make_better = False
                    final_prompt = solution
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        final_prompt += "\n\nβœ…Source:\n" 
                        for d in result["source_documents"]:
                            final_prompt += "- " + str(d) + "\n"
                else:
                    final_prompt = prompt4Context(prompt, context, solution)
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        source += "\n\nβœ…Source:\n"
                        for d in result["source_documents"]:
                            source += "- " + str(d) + "\n"
                    


        elif st.session_state['plugin'] == "πŸ’Ύ Upload saved VectorStore" and 'old_db' in st.session_state:
            #get only last message
            context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            with st.spinner('πŸš€ Using tool to get information...'):
                result = st.session_state['old_db']({"query": prompt})
                solution = result["result"]
                if len(solution.split()) > 110:
                    make_better = False
                    final_prompt = solution
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        final_prompt += "\n\nβœ…Source:\n" 
                        for d in result["source_documents"]:
                            final_prompt += "- " + str(d) + "\n"
                else:
                    final_prompt = prompt4Context(prompt, context, solution)
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        source += "\n\nβœ…Source:\n"
                        for d in result["source_documents"]:
                            source += "- " + str(d) + "\n"


        elif st.session_state['plugin'] == "🎧 Talk with your AUDIO" and 'audio' in st.session_state:
            #get only last message
            context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            with st.spinner('πŸš€ Using tool to get information...'):
                result = st.session_state['audio']({"query": prompt})
                solution = result["result"]
                if len(solution.split()) > 110:
                    make_better = False
                    final_prompt = solution
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        final_prompt += "\n\nβœ…Source:\n" 
                        for d in result["source_documents"]:
                            final_prompt += "- " + str(d) + "\n"
                else:
                    final_prompt = prompt4Audio(prompt, context, solution)
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        source += "\n\nβœ…Source:\n"
                        for d in result["source_documents"]:
                            source += "- " + str(d) + "\n"


        elif st.session_state['plugin'] == "πŸŽ₯ Talk with YT video" and 'yt' in st.session_state:
            context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            with st.spinner('πŸš€ Using tool to get information...'):
                result = st.session_state['yt']({"query": prompt})
                solution = result["result"]
                if len(solution.split()) > 110:
                    make_better = False
                    final_prompt = solution
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        final_prompt += "\n\nβœ…Source:\n" 
                        for d in result["source_documents"]:
                            final_prompt += "- " + str(d) + "\n"
                else:
                    final_prompt = prompt4YT(prompt, context, solution)
                    if 'source_documents' in result and len(result["source_documents"]) > 0:
                        source += "\n\nβœ…Source:\n"
                        for d in result["source_documents"]:
                            source += "- " + str(d) + "\n"
    

        else:
            #get last message if exists
            if len(st.session_state['past']) == 1:
                context = f"User: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            else:
                context = f"User: {st.session_state['past'][-2]}\nBot: {st.session_state['generated'][-2]}\nUser: {st.session_state['past'][-1]}\nBot: {st.session_state['generated'][-1]}\n"
            
            if 'web_search' in st.session_state:
                if st.session_state['web_search'] == "True":
                    with st.spinner('πŸš€ Using internet to get information...'):
                        internet_result = ""
                        internet_answer = ""
                        with DDGS() as ddgs:
                            ddgs_gen = ddgs.text(prompt, region=st.session_state['region'], safesearch=st.session_state['safesearch'], timelimit=st.session_state['timelimit'])
                            for r in islice(ddgs_gen, st.session_state['max_results']):
                                internet_result += str(r) + "\n\n"
                            fast_answer = ddgs.answers(prompt)
                            for r in islice(fast_answer, 2):
                                internet_answer += str(r) + "\n\n"

                        final_prompt = prompt4conversationInternet(prompt, context, internet_result, internet_answer)
                else:
                    final_prompt = prompt4conversation(prompt, context)
            else:
                final_prompt = prompt4conversation(prompt, context)

        if make_better:
            with st.spinner('πŸš€ Generating response...'):
                print(final_prompt)
                response = st.session_state['chatbot'].chat(final_prompt, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, top_k=top_k, max_new_tokens=max_new_tokens)
                response += source
        else:
            print(final_prompt)
            response = final_prompt

    return response

## Conditional display of AI generated responses as a function of user provided prompts
with response_container:
    if input_text and 'hf_email' in st.session_state and 'hf_pass' in st.session_state:
        response = generate_response(input_text)
        st.session_state.past.append(input_text)
        st.session_state.generated.append(response)
    

    #print message in normal order, frist user then bot
    if 'generated' in st.session_state:
        if st.session_state['generated']:
            for i in range(len(st.session_state['generated'])):
                with st.chat_message(name="user"):
                    st.markdown(st.session_state['past'][i])
                
                with st.chat_message(name="assistant"):
                    if len(st.session_state['generated'][i].split("βœ…Source:")) > 1:
                        source = st.session_state['generated'][i].split("βœ…Source:")[1]
                        mess = st.session_state['generated'][i].split("βœ…Source:")[0]

                        st.markdown(mess)
                        with st.expander("πŸ“š Source of message number " + str(i+1)):
                            st.markdown(source)

                    else:
                        st.markdown(st.session_state['generated'][i])

            st.markdown('', unsafe_allow_html=True)
            
            
    else:
        st.info("πŸ‘‹ Hey , we are very happy to see you here πŸ€—")
        st.info("πŸ‘‰ Please Login to continue, click on top left corner to login πŸš€")
        st.error("πŸ‘‰ If you are not registered on Hugging Face, please register first and then login πŸ€—")