Spaces:
Runtime error
Runtime error
fix pdf handling
Browse files
app.py
CHANGED
@@ -46,72 +46,65 @@ prompt = ChatPromptTemplate.from_messages(messages)
|
|
46 |
chain_type_kwargs = {"prompt": prompt}
|
47 |
|
48 |
|
49 |
-
def process_file(
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
texts = [text.page_content for text in texts]
|
59 |
return texts
|
60 |
|
61 |
|
62 |
|
|
|
63 |
@cl.on_chat_start
|
64 |
async def on_chat_start():
|
65 |
-
|
66 |
|
67 |
-
#
|
68 |
-
while
|
69 |
-
# Note: This now accepts both text/plain and application/pdf files
|
70 |
files = await cl.AskFileMessage(
|
71 |
content="Please upload a text or PDF file to begin!",
|
72 |
-
accept=["text/plain", "application/pdf"],
|
73 |
-
max_size_mb=20,
|
74 |
timeout=180,
|
75 |
).send()
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
# Notify the user that their file is being processed
|
80 |
-
msg = cl.Message(content=f"Processing `{file.name}`...")
|
81 |
-
await msg.send()
|
82 |
|
83 |
-
# Initialize an empty list for texts,
|
84 |
texts = []
|
85 |
|
86 |
-
#
|
87 |
-
if
|
88 |
-
# Handle text file
|
89 |
with open(file.path, "r", encoding="utf-8") as f:
|
90 |
text = f.read()
|
91 |
-
texts.append(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
# Update the user about the text file
|
94 |
-
await cl.Message(
|
95 |
-
content=f"`{file.name}` uploaded, it contains {len(text)} characters!"
|
96 |
-
).send()
|
97 |
-
|
98 |
-
elif file.content_type == "application/pdf":
|
99 |
-
# Handle PDF file
|
100 |
-
texts = process_file(file) # Assuming process_file() is a function you've defined to extract text from PDF
|
101 |
-
|
102 |
-
# Create metadata for each chunk
|
103 |
-
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
104 |
-
|
105 |
-
# Create a Chroma vector store
|
106 |
-
embeddings = OpenAIEmbeddings()
|
107 |
-
docsearch = await cl.make_async(Chroma.from_texts)(
|
108 |
-
texts, embeddings, metadatas=metadatas
|
109 |
-
)
|
110 |
-
|
111 |
-
# The rest of your setup, like creating the chain, goes here
|
112 |
-
# This part is unchanged from your second snippet
|
113 |
message_history = ChatMessageHistory()
|
114 |
-
|
115 |
memory = ConversationBufferMemory(
|
116 |
memory_key="chat_history",
|
117 |
output_key="answer",
|
@@ -119,6 +112,7 @@ async def on_chat_start():
|
|
119 |
return_messages=True,
|
120 |
)
|
121 |
|
|
|
122 |
chain = ConversationalRetrievalChain.from_llm(
|
123 |
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
|
124 |
chain_type="stuff",
|
@@ -128,9 +122,9 @@ async def on_chat_start():
|
|
128 |
)
|
129 |
|
130 |
# Let the user know that the system is ready
|
131 |
-
|
132 |
-
await msg.update()
|
133 |
|
|
|
134 |
cl.user_session.set("chain", chain)
|
135 |
|
136 |
|
|
|
46 |
chain_type_kwargs = {"prompt": prompt}
|
47 |
|
48 |
|
49 |
+
def process_file(file_path: str):
|
50 |
+
# Example using PyPDF2 to extract text from a PDF file
|
51 |
+
from PyPDF2 import PdfReader
|
52 |
|
53 |
+
reader = PdfReader(file_path)
|
54 |
+
texts = []
|
55 |
+
|
56 |
+
for page in reader.pages:
|
57 |
+
texts.append(page.extract_text())
|
58 |
+
|
|
|
59 |
return texts
|
60 |
|
61 |
|
62 |
|
63 |
+
|
64 |
@cl.on_chat_start
|
65 |
async def on_chat_start():
|
66 |
+
file = None
|
67 |
|
68 |
+
# Prompt users to upload either a text or PDF file
|
69 |
+
while file is None:
|
|
|
70 |
files = await cl.AskFileMessage(
|
71 |
content="Please upload a text or PDF file to begin!",
|
72 |
+
accept=["text/plain", "application/pdf"], # This line is for UI guidance
|
73 |
+
max_size_mb=20,
|
74 |
timeout=180,
|
75 |
).send()
|
76 |
+
if files:
|
77 |
+
file = files[0] # Assuming the user uploads one file at a time
|
78 |
|
79 |
+
filename = file.name
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# Initialize an empty list for texts, which will be populated based on the file type
|
82 |
texts = []
|
83 |
|
84 |
+
# Process the file based on its extension
|
85 |
+
if filename.endswith('.txt'):
|
86 |
+
# Handle as text file
|
87 |
with open(file.path, "r", encoding="utf-8") as f:
|
88 |
text = f.read()
|
89 |
+
texts.append(text)
|
90 |
+
await cl.Message(content=f"`{filename}` uploaded, it contains {len(text)} characters!").send()
|
91 |
+
elif filename.endswith('.pdf'):
|
92 |
+
# Handle as PDF
|
93 |
+
texts = process_file(file.path) # Adjust this call according to your PDF processing implementation
|
94 |
+
else:
|
95 |
+
await cl.Message(content="Unsupported file type uploaded. Please upload a text or PDF file.").send()
|
96 |
+
return # Exit if the file type is not supported
|
97 |
+
|
98 |
+
# Process texts for conversational retrieval or other purposes here
|
99 |
+
# For demonstration, we'll just set up a simple Chroma vector store and conversational retrieval chain
|
100 |
+
|
101 |
+
# Create a Chroma vector store
|
102 |
+
embeddings = OpenAIEmbeddings()
|
103 |
+
docsearch = await cl.make_async(Chroma.from_texts)(
|
104 |
+
texts, embeddings, metadatas=[{"source": f"{i}-pl"} for i in range(len(texts))]
|
105 |
+
)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
message_history = ChatMessageHistory()
|
|
|
108 |
memory = ConversationBufferMemory(
|
109 |
memory_key="chat_history",
|
110 |
output_key="answer",
|
|
|
112 |
return_messages=True,
|
113 |
)
|
114 |
|
115 |
+
# Set up the conversational retrieval chain
|
116 |
chain = ConversationalRetrievalChain.from_llm(
|
117 |
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
|
118 |
chain_type="stuff",
|
|
|
122 |
)
|
123 |
|
124 |
# Let the user know that the system is ready
|
125 |
+
await cl.Message(content=f"Your file `{filename}` is now ready for questions!").send()
|
|
|
126 |
|
127 |
+
# Save the chain in the user session for later use
|
128 |
cl.user_session.set("chain", chain)
|
129 |
|
130 |
|