tonic commited on
Commit
7ce9ee7
1 Parent(s): fa05361

initial commit

Browse files
Files changed (3) hide show
  1. README.md +2 -2
  2. app.py +76 -0
  3. requirements.txt +4 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: TigerLM
3
- emoji: 📚
4
  colorFrom: purple
5
  colorTo: blue
6
  sdk: gradio
 
1
  ---
2
+ title: TigerAI-StructLM
3
+ emoji: 🐯📏
4
  colorFrom: purple
5
  colorTo: blue
6
  sdk: gradio
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import torch
3
+ import sys
4
+ import html
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
6
+ from threading import Thread
7
+ import gradio as gr
8
+ from gradio_rich_textbox import RichTextbox
9
+
10
+
11
+
12
+ title = """# 🙋🏻‍♂️Welcome to🌟Tonic's🐯📏TigerAI-StructLM-7B
13
+ StructLM, is a series of open-source large language models (LLMs) finetuned for structured knowledge grounding (SKG) tasks. You can build with this endpoint using 🐯📏TigerAI-StructLM available here : [TIGER-Lab/StructLM-7B](https://huggingface.co/TIGER-Lab/StructLM-7B).
14
+ You can also use 🐯📏TigerAI-StructLM by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/TigerLM?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
15
+ Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) Math with [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
16
+ """
17
+ assistant_message = """Use the information in the following table to solve the problem, choose between the choices if they are provided. table:"""
18
+ system_message = "You are an AI assistant that specializes in analyzing and reasoning over structured information. You will be given a task, optionally with some structured knowledge input. Your answer must strictly adhere to the output format, if specified."
19
+ tabular_data = "col : day | kilometers row 1 : tuesday | 0 row 2 : wednesday | 0 row 3 : thursday | 4 row 4 : friday | 0 row 5 : saturday | 0"
20
+ user_message = "Allie kept track of how many kilometers she walked during the past 5 days. What is the range of the numbers?"
21
+ model_name = 'TIGER-Lab/StructLM-7B'
22
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
23
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
24
+ # model.generation_config = GenerationConfig.from_pretrained(model_name)
25
+ # model.generation_config.pad_token_id = model.generation_config.eos_token_id
26
+
27
+ @torch.inference_mode()
28
+ @spaces.GPU
29
+ def predict_math_bot(user_message, system_message="", assistant_message = "", tabular_data = "", max_new_tokens=125, temperature=0.1, top_p=0.9, repetition_penalty=1.9, do_sample=False):
30
+ prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n{assistant_message}\n\n{tabular_data}\n\n\nQuestion:\n\n{user_message}[/INST]"
31
+ inputs = tokenizer(prompt, return_tensors='pt', add_special_tokens=True)
32
+ input_ids = inputs["input_ids"].to(model.device)
33
+
34
+ output_ids = model.generate(
35
+ input_ids,
36
+ max_length=input_ids.shape[1] + max_new_tokens,
37
+ temperature=temperature,
38
+ top_p=top_p,
39
+ repetition_penalty=repetition_penalty,
40
+ pad_token_id=tokenizer.eos_token_id,
41
+ do_sample=do_sample
42
+ )
43
+
44
+ response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
45
+ return response
46
+
47
+ def main():
48
+ with gr.Blocks() as demo:
49
+ gr.Markdown(title)
50
+ with gr.Row():
51
+ system_message = gr.Textbox(label="📉System Prompt", placeholder=system_message)
52
+ assistant_message = gr.Textbox(label="Assistant Message", placeholder=assistant_message)
53
+ tabular_data = gr.Textbox(label="Tabular Data", placeholder=tabular_data)
54
+ user_message = gr.Textbox(label="🫡Enter your query here...", placeholder=user_message)
55
+
56
+
57
+ with gr.Accordion("Advanced Settings"):
58
+ with gr.Row():
59
+ max_new_tokens = gr.Slider(label="Max new tokens", value=125, minimum=25, maximum=1250)
60
+ temperature = gr.Slider(label="Temperature", value=0.1, minimum=0.05, maximum=1.0)
61
+ top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99)
62
+ repetition_penalty = gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0)
63
+ do_sample = gr.Checkbox(label="Do sample", value=False)
64
+
65
+ output_text = gr.Textbox(label="🐯📏TigerAI-StructLM-7B", interactive=True)
66
+
67
+ gr.Button("Try🫡📉MetaMath").click(
68
+ predict_math_bot,
69
+ inputs=[user_message, system_message, assistant_message, tabular_data, max_new_tokens, temperature, top_p, repetition_penalty, do_sample],
70
+ outputs=output_text
71
+ )
72
+
73
+ demo.launch()
74
+
75
+ if __name__ == "__main__":
76
+ main()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ accelerate
4
+ bitsandbytes