Spaces:
Build error
Build error
File size: 2,622 Bytes
8dbf509 7b924b8 8dbf509 e042085 7b924b8 8dbf509 7b924b8 e042085 9ff190c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# main.py
import spaces
import torch
import torch.nn.functional as F
from torch.nn import DataParallel
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import os
import json
import numpy as np
import gradio as gr
from huggingface_hub import InferenceClient
import openai
from openai import OpenAI
from globalvars import API_BASE, API_KEY, intention_prompt
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
## add chroma vector store
## use instruct embeddings
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True)
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True).to(device)
## Make intention Mapper
intention_client = OpenAI(
api_key=API_KEY,
base_url=API_BASE
)
intention_completion = intention_client.chat.completions.create(
model="yi-large",
messages=[{"role": "system", "content": intention_prompt},{"role": "user", "content": inputext}]
)
# print(completion)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |