Spaces:
Build error
Build error
File size: 7,814 Bytes
8dbf509 7b924b8 8dbf509 e042085 66854bf af4feb8 2ca300b eb88ab8 7b924b8 8dbf509 af4feb8 a1c598c eb88ab8 7b924b8 eb88ab8 af4feb8 e042085 eb88ab8 a12fc17 eb88ab8 66854bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# main.py
import spaces
import torch
import torch.nn.functional as F
from torch.nn import DataParallel
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import os
import json
import numpy as np
import gradio as gr
from huggingface_hub import InferenceClient
import openai
from openai import OpenAI
from globalvars import API_BASE, intention_prompt, tasks , system_message, model_name
from dotenv import load_dotenv
import re
from utils import load_env_variables
import chromadb
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.config import Settings
from chromadb import HttpClient
from langchain_community.document_loaders import UnstructuredFileLoader
from utils import load_env_variables , parse_and_route
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hf_token, yi_token = load_env_variables()
def clear_cuda_cache():
torch.cuda.empty_cache()
client = OpenAI(
api_key=yi_token,
base_url=API_BASE
)
class EmbeddingGenerator:
def __init__(self, model_name: str, token: str, intention_client):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)
self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)
self.intention_client = intention_client
def clear_cuda_cache(self):
torch.cuda.empty_cache()
@spaces.GPU
def compute_embeddings(self, input_text: str):
# Get the intention
intention_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": intention_prompt},
{"role": "user", "content": input_text}
]
)
intention_output = intention_completion.choices[0].message['content']
# Parse and route the intention
parsed_task = parse_and_route(intention_output)
selected_task = list(parsed_task.keys())[0]
# Construct the prompt
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
query_prefix = f"Instruct: {task_description}\nQuery: "
queries = [input_text]
# Get the embeddings
with torch.no_grad():
inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)
outputs = self.model(**inputs)
query_embeddings = outputs.last_hidden_state.mean(dim=1)
# Normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
embeddings_list = query_embeddings.detach().cpu().numpy().tolist()
self.clear_cuda_cache()
return embeddings_list
class MyEmbeddingFunction(EmbeddingFunction):
def __init__(self, embedding_generator: EmbeddingGenerator):
self.embedding_generator = embedding_generator
def __call__(self, input: Documents) -> Embeddings:
embeddings = [self.embedding_generator.compute_embeddings(doc) for doc in input]
embeddings = [item for sublist in embeddings for item in sublist]
return embeddings
class DocumentLoader:
def __init__(self, file_path: str, mode: str = "elements"):
self.file_path = file_path
self.mode = mode
def load_documents(self):
loader = UnstructuredFileLoader(self.file_path, mode=self.mode)
docs = loader.load()
return [doc.page_content for doc in docs]
class ChromaManager:
def __init__(self, collection_name: str, embedding_function: MyEmbeddingFunction):
self.client = HttpClient(settings=Settings(allow_reset=True))
self.client.reset() # resets the database
self.collection = self.client.create_collection(collection_name)
self.embedding_function = embedding_function
def add_documents(self, documents: list):
for doc in documents:
self.collection.add(ids=[str(uuid.uuid1())], documents=[doc], embeddings=self.embedding_function([doc]))
def query(self, query_text: str):
db = Chroma(client=self.client, collection_name=self.collection.name, embedding_function=self.embedding_function)
result_docs = db.similarity_search(query_text)
return result_docs
# Initialize clients
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
embedding_function = MyEmbeddingFunction(embedding_generator=embedding_generator)
chroma_manager = ChromaManager(embedding_function=embedding_function)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
retrieved_text = query_documents(message)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": f"{retrieved_text}\n\n{message}"})
response = ""
for message in intention_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def upload_documents(files):
for file in files:
loader = DocumentLoader(file.name)
documents = loader.load_documents()
chroma_manager.add_documents(documents)
return "Documents uploaded and processed successfully!"
def query_documents(query):
results = chroma_manager.query(query)
return "\n\n".join([result.content for result in results])
with gr.Blocks() as demo:
with gr.Tab("Upload Documents"):
with gr.Row():
document_upload = gr.File(file_count="multiple", file_types=["document"])
upload_button = gr.Button("Upload and Process")
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
with gr.Tab("Ask Questions"):
with gr.Row():
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
query_input = gr.Textbox(label="Query")
query_button = gr.Button("Query")
query_output = gr.Textbox()
query_button.click(query_documents, inputs=query_input, outputs=query_output)
if __name__ == "__main__":
demo.launch() |