Spaces:
Build error
Build error
improve pass metadata
Browse files
app.py
CHANGED
@@ -112,10 +112,13 @@ class MyEmbeddingFunction(EmbeddingFunction):
|
|
112 |
def __init__(self, embedding_generator: EmbeddingGenerator):
|
113 |
self.embedding_generator = embedding_generator
|
114 |
|
115 |
-
def __call__(self, input: Documents) -> Embeddings:
|
116 |
-
|
117 |
-
embeddings = [item for
|
118 |
-
|
|
|
|
|
|
|
119 |
|
120 |
def load_documents(file_path: str, mode: str = "elements"):
|
121 |
loader = UnstructuredFileLoader(file_path, mode=mode)
|
@@ -130,8 +133,15 @@ def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunct
|
|
130 |
|
131 |
def add_documents_to_chroma(client, collection, documents: list, embedding_function: MyEmbeddingFunction):
|
132 |
for doc in documents:
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
def query_chroma(client, collection_name: str, query_text: str, embedding_function: MyEmbeddingFunction):
|
136 |
db = Chroma(client=client, collection_name=collection_name, embedding_function=embedding_function)
|
137 |
result_docs = db.similarity_search(query_text)
|
@@ -177,8 +187,8 @@ def upload_documents(files):
|
|
177 |
for file in files:
|
178 |
loader = UnstructuredFileLoader(file.name)
|
179 |
documents = loader.load_documents()
|
180 |
-
add_documents_to_chroma(documents)
|
181 |
-
return "Documents uploaded and processed successfully!"
|
182 |
|
183 |
def query_documents(query):
|
184 |
results = query_chroma(query)
|
|
|
112 |
def __init__(self, embedding_generator: EmbeddingGenerator):
|
113 |
self.embedding_generator = embedding_generator
|
114 |
|
115 |
+
def __call__(self, input: Documents) -> (Embeddings, list):
|
116 |
+
embeddings_with_metadata = [self.embedding_generator.compute_embeddings(doc) for doc in input]
|
117 |
+
embeddings = [item[0] for item in embeddings_with_metadata]
|
118 |
+
metadata = [item[1] for item in embeddings_with_metadata]
|
119 |
+
embeddings_flattened = [emb for sublist in embeddings for emb in sublist]
|
120 |
+
metadata_flattened = [meta for sublist in metadata for meta in sublist]
|
121 |
+
return embeddings_flattened, metadata_flattened
|
122 |
|
123 |
def load_documents(file_path: str, mode: str = "elements"):
|
124 |
loader = UnstructuredFileLoader(file_path, mode=mode)
|
|
|
133 |
|
134 |
def add_documents_to_chroma(client, collection, documents: list, embedding_function: MyEmbeddingFunction):
|
135 |
for doc in documents:
|
136 |
+
embeddings, metadata = embedding_function.embedding_generator.compute_embeddings(doc)
|
137 |
+
for embedding, meta in zip(embeddings, metadata):
|
138 |
+
collection.add(
|
139 |
+
ids=[str(uuid.uuid1())],
|
140 |
+
documents=[doc],
|
141 |
+
embeddings=[embedding],
|
142 |
+
metadatas=[meta]
|
143 |
+
)
|
144 |
+
|
145 |
def query_chroma(client, collection_name: str, query_text: str, embedding_function: MyEmbeddingFunction):
|
146 |
db = Chroma(client=client, collection_name=collection_name, embedding_function=embedding_function)
|
147 |
result_docs = db.similarity_search(query_text)
|
|
|
187 |
for file in files:
|
188 |
loader = UnstructuredFileLoader(file.name)
|
189 |
documents = loader.load_documents()
|
190 |
+
add_documents_to_chroma(chroma_client, chroma_collection, documents, embedding_function)
|
191 |
+
return "Documents uploaded and processed successfully!"
|
192 |
|
193 |
def query_documents(query):
|
194 |
results = query_chroma(query)
|