File size: 4,433 Bytes
3dc4061
81395fc
b01335d
3dc4061
 
6ebcdab
 
 
 
3dc4061
3202d1b
3dc4061
 
 
 
 
 
3202d1b
3dc4061
3202d1b
3dc4061
3202d1b
3dc4061
 
 
 
3202d1b
 
3dc4061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8867e8a
4ffc0ce
5189ab0
c30f436
3dc4061
7d0b03f
 
3dc4061
 
237d9d2
bdec0c5
bf9669d
bdec0c5
 
bf9669d
bdec0c5
81395fc
7f45f98
5b6bc45
535aa50
81395fc
237d9d2
 
 
 
3202d1b
 
 
 
81395fc
3202d1b
81395fc
 
10b4b34
81395fc
 
 
 
 
af69c70
 
81395fc
bf9669d
81395fc
 
 
 
d992640
237d9d2
b01335d
 
 
3202d1b
b01335d
 
 
 
 
 
3202d1b
b01335d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from transformers import AutoTokenizer, MistralForCausalLM
import torch
import gradio as gr
import random
from textwrap import wrap
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr

# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
    lines = text.split('\n')
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
    wrapped_text = '\n'.join(wrapped_lines)
    return wrapped_text

def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
    """
    Generates text using a large language model, given a user input and a system prompt.
    Args:
        user_input: The user's input text to generate a response for.
        system_prompt: Optional system prompt.
    Returns:
        A string containing the generated text.
    """
    # Combine user input and system prompt
    formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"

    # Encode the input text
    encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
    model_inputs = encodeds.to(device)

    # Generate a response using the model
    output = model.generate(
        **model_inputs,
        max_length=max_length,
        use_cache=True,
        early_stopping=True,
        bos_token_id=model.config.bos_token_id,
        eos_token_id=model.config.eos_token_id,
        pad_token_id=model.config.eos_token_id,
        temperature=0.1,
        do_sample=True
    )

    # Decode the response
    response_text = tokenizer.decode(output[0], skip_special_tokens=True)

    return response_text

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Use the base model's ID
base_model_id = "mistralai/Mistral-7B-v0.1"
model_directory = "Tonic/mistralmed"

# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'

# Specify the configuration class for the model
#model_config = AutoConfig.from_pretrained(base_model_id)

# Load the PEFT model with the specified configuration
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)

# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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")
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")

class ChatBot:
    def __init__(self):
        self.history = []

    def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
        # Combine user input and system prompt
        formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"

        # Encode user input
        user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")

        # Concatenate the user input with chat history
        if len(self.history) > 0:
            chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1)
        else:
            chat_history_ids = user_input_ids

        # Generate a response using the PEFT model
        response = peft_model.generate(input_ids=chat_history_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)

        # Update chat history
        self.history = chat_history_ids

        # Decode and return the response
        response_text = tokenizer.decode(response[0], skip_special_tokens=True)
        return response_text

bot = ChatBot()

title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
examples = [["What is the proper treatment for buccal herpes?"]]

iface = gr.Interface(
    fn=bot.predict,
    title=title,
    description=description,
    examples=examples,
    inputs=["text", "text"],  # Take user input and system prompt separately
    outputs="text",
    theme="ParityError/Anime"
)

iface.launch()