Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -53,25 +53,13 @@ def multimodal_prompt(user_input, system_prompt="You are an expert medical analy
|
|
53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
|
55 |
# Use the base model's ID
|
56 |
-
base_model_id = "
|
57 |
-
model_directory = "Tonic/mistralmed"
|
58 |
|
59 |
# Instantiate the Tokenizer
|
60 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
61 |
-
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
|
62 |
tokenizer.pad_token = tokenizer.eos_token
|
63 |
tokenizer.padding_side = 'left'
|
64 |
-
|
65 |
-
# Specify the configuration class for the model
|
66 |
-
#model_config = AutoConfig.from_pretrained(base_model_id)
|
67 |
-
|
68 |
-
# Load the PEFT model with the specified configuration
|
69 |
-
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
|
70 |
-
|
71 |
-
# Load the PEFT model
|
72 |
-
peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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")
|
73 |
-
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
|
74 |
-
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")
|
75 |
|
76 |
class ChatBot:
|
77 |
def __init__(self):
|
@@ -91,7 +79,7 @@ class ChatBot:
|
|
91 |
chat_history_ids = user_input_ids
|
92 |
|
93 |
# Generate a response using the PEFT model
|
94 |
-
response =
|
95 |
|
96 |
# Update chat history
|
97 |
self.history = chat_history_ids
|
@@ -102,9 +90,9 @@ class ChatBot:
|
|
102 |
|
103 |
bot = ChatBot()
|
104 |
|
105 |
-
title = "👋🏻Welcome to Tonic's
|
106 |
-
description = "You can use this Space to test out the current model (
|
107 |
-
examples = [["
|
108 |
|
109 |
iface = gr.Interface(
|
110 |
fn=bot.predict,
|
|
|
53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
|
55 |
# Use the base model's ID
|
56 |
+
base_model_id = "OpenLLM-France/Claire-Mistral-7B-0.1"
|
|
|
57 |
|
58 |
# Instantiate the Tokenizer
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("OpenLLM-France/Claire-Mistral-7B-0.1", trust_remote_code=True, padding_side="left")
|
|
|
60 |
tokenizer.pad_token = tokenizer.eos_token
|
61 |
tokenizer.padding_side = 'left'
|
62 |
+
model = AutoModelForCausalLM.from_pretrained("OpenLLM-France/Claire-Mistral-7B-0.1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
class ChatBot:
|
65 |
def __init__(self):
|
|
|
79 |
chat_history_ids = user_input_ids
|
80 |
|
81 |
# Generate a response using the PEFT model
|
82 |
+
response = model.generate(input_ids=chat_history_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
83 |
|
84 |
# Update chat history
|
85 |
self.history = chat_history_ids
|
|
|
90 |
|
91 |
bot = ChatBot()
|
92 |
|
93 |
+
title = "👋🏻Welcome to Tonic's Claire Chat🚀"
|
94 |
+
description = "You can use this Space to test out the current model (ClaireLLM) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
|
95 |
+
examples = [["Oueche Normal, Claire, ça va ou quoi?", "bonjour je m'appele Claire et je suis une assistante francophone-first conçu par openLLM"]]
|
96 |
|
97 |
iface = gr.Interface(
|
98 |
fn=bot.predict,
|