Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,130 +1,77 @@
|
|
1 |
-
import
|
|
|
2 |
import transformers
|
3 |
-
from transformers import
|
4 |
-
from optimum.bettertransformer import BetterTransformer
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
-
import json
|
8 |
-
import os
|
9 |
-
import shutil
|
10 |
-
import requests
|
11 |
-
|
12 |
-
# Define the device
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
#Define variables
|
15 |
-
temperature=0.4
|
16 |
-
max_new_tokens=240
|
17 |
-
top_p=0.92
|
18 |
-
repetition_penalty=1.7
|
19 |
-
|
20 |
-
model_name = "OpenLLM-France/Claire-7B-0.1"
|
21 |
-
|
22 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
23 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
24 |
-
device_map="auto",
|
25 |
-
torch_dtype=torch.bfloat16,
|
26 |
-
load_in_4bit=True # For efficient inference, if supported by the GPU card
|
27 |
-
)
|
28 |
-
model = BetterTransformer.transform(model)
|
29 |
-
|
30 |
-
|
31 |
-
# Class to encapsulate the Falcon chatbot
|
32 |
-
class FalconChatBot:
|
33 |
-
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
|
34 |
-
self.system_prompt = system_prompt
|
35 |
-
|
36 |
-
def predict(self, user_message, assistant_message, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9):
|
37 |
-
# Combine the user and assistant messages into a conversation
|
38 |
-
conversation = f"{self.system_prompt} {assistant_message if assistant_message else ''} {user_message} "
|
39 |
-
# Encode the conversation using the tokenizer
|
40 |
-
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
41 |
-
input_ids = input_ids.to(device)
|
42 |
-
# Generate a response using the Falcon model
|
43 |
-
response = model.generate(
|
44 |
-
input_ids=input_ids,
|
45 |
-
use_cache=False,
|
46 |
-
early_stopping=False,
|
47 |
-
bos_token_id=model.config.bos_token_id,
|
48 |
-
eos_token_id=model.config.eos_token_id,
|
49 |
-
pad_token_id=model.config.eos_token_id,
|
50 |
-
temperature=temperature,
|
51 |
-
do_sample=True,
|
52 |
-
max_new_tokens=max_new_tokens,
|
53 |
-
top_p=top_p,
|
54 |
-
repetition_penalty=repetition_penalty
|
55 |
-
)
|
56 |
-
# Decode the generated response to text
|
57 |
-
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
58 |
-
return response_text
|
59 |
|
60 |
-
# Create the Falcon chatbot instance
|
61 |
-
falcon_bot = FalconChatBot()
|
62 |
|
63 |
# Define the Gradio interface
|
64 |
-
title = "
|
65 |
-
description = "
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
info="Penalize repeated tokens",
|
114 |
-
)
|
115 |
-
]
|
116 |
|
117 |
iface = gr.Interface(
|
118 |
-
fn=
|
119 |
title=title,
|
120 |
description=description,
|
121 |
-
examples=examples,
|
122 |
inputs=[
|
123 |
-
gr.Textbox(label="
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
outputs="text",
|
126 |
theme="ParityError/Anime"
|
127 |
)
|
128 |
|
129 |
-
# Launch the Gradio interface
|
130 |
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
import transformers
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
5 |
import torch
|
6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
8 |
|
9 |
# Define the Gradio interface
|
10 |
+
title = "Welcome to Tonic's 🐋🐳Orca-2-13B!"
|
11 |
+
description = "You can use [🐋🐳microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) Or clone this space to use it locally or on huggingface! [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
12 |
+
|
13 |
+
|
14 |
+
# Load the model and tokenizer
|
15 |
+
model_name = "microsoft/Orca-2-13b"
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto')
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False,)
|
18 |
+
|
19 |
+
|
20 |
+
class OrcaChatBot:
|
21 |
+
def __init__(self, model, tokenizer, system_message="You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."):
|
22 |
+
self.model = model
|
23 |
+
self.tokenizer = tokenizer
|
24 |
+
self.system_message = system_message
|
25 |
+
self.conversation_history = None
|
26 |
+
|
27 |
+
def predict(self, user_message, temperature=0.4, max_new_tokens=70, top_p=0.99, repetition_penalty=1.9):
|
28 |
+
# Prepare the prompt
|
29 |
+
prompt = f"<|im_start|>system\n{self.system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant" if self.conversation_history is None else self.conversation_history + f"<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
|
30 |
+
|
31 |
+
# Encode the prompt
|
32 |
+
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
|
33 |
+
input_ids = inputs["input_ids"].to(self.model.device)
|
34 |
+
|
35 |
+
# Generate a response
|
36 |
+
output_ids = self.model.generate(
|
37 |
+
input_ids,
|
38 |
+
max_length=input_ids.shape[1] + max_new_tokens,
|
39 |
+
temperature=temperature,
|
40 |
+
top_p=top_p,
|
41 |
+
repetition_penalty=repetition_penalty,
|
42 |
+
pad_token_id=self.tokenizer.eos_token_id
|
43 |
+
)
|
44 |
+
|
45 |
+
# Decode the generated response
|
46 |
+
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
47 |
+
|
48 |
+
# Update conversation history
|
49 |
+
self.conversation_history = self.tokenizer.decode(output_ids[0], skip_special_tokens=False)
|
50 |
+
|
51 |
+
return response
|
52 |
+
|
53 |
+
Orca_bot = OrcaChatBot(model, tokenizer)
|
54 |
+
|
55 |
+
def gradio_predict(user_message, character_intro, max_new_tokens, temperature, top_p, repetition_penalty):
|
56 |
+
# Prepend the character introduction to the user message if provided
|
57 |
+
full_message = f"{system_message}\n{user_message}" if system_message else user_message
|
58 |
+
return Orca_bot.predict(full_message, temperature, max_new_tokens, top_p, repetition_penalty)
|
|
|
|
|
|
|
59 |
|
60 |
iface = gr.Interface(
|
61 |
+
fn=gradio_predict,
|
62 |
title=title,
|
63 |
description=description,
|
|
|
64 |
inputs=[
|
65 |
+
gr.Textbox(label="Your Message", type="text", lines=3),
|
66 |
+
gr.Textbox(label="Introduce a Character Here or Set a Scene (system prompt)", type="text", lines=2),
|
67 |
+
gr.Slider(label="Max new tokens", value=1200, minimum=25, maximum=4096, step=1),
|
68 |
+
gr.Slider(label="Temperature", value=0.7, minimum=0.05, maximum=1.0, step=0.05),
|
69 |
+
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05),
|
70 |
+
gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
|
71 |
+
],
|
72 |
outputs="text",
|
73 |
theme="ParityError/Anime"
|
74 |
)
|
75 |
|
76 |
+
# Launch the Gradio interface
|
77 |
iface.launch()
|