|
import os |
|
import requests |
|
from io import BytesIO |
|
|
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
|
|
def generate_caption(image): |
|
|
|
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224") |
|
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") |
|
|
|
prompt = "<grounding>An image of" |
|
|
|
|
|
img = Image.open(BytesIO(image)) |
|
|
|
|
|
img.save("temp_image.jpg") |
|
img = Image.open("temp_image.jpg") |
|
|
|
inputs = processor(text=prompt, images=img, return_tensors="pt") |
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
processed_text, _ = processor.post_process_generation(generated_text) |
|
|
|
return processed_text |
|
|
|
import gradio as gr |
|
|
|
title = 'Image Caption Generator' |
|
description = 'Generate descriptive captions for images.' |
|
examples = [["https://example.com/image1.jpg"]] |
|
article = '<p style="margin:auto;max-width:600px;">This tool generates descriptive captions for given images.</p>' |
|
|
|
interface = gr.Interface(fn=generate_caption, |
|
inputs=gr.Image(), |
|
outputs=gr.Textbox(), |
|
title=title, description=description, examples=examples, article=article) |
|
|
|
interface.launch() |