winfred2027 commited on
Commit
6de2454
1 Parent(s): 9fe654e

Upload 3 files

Browse files
openshape/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from huggingface_hub import hf_hub_download
4
+ from .ppat_rgb import Projected, PointPatchTransformer
5
+
6
+
7
+ def module(state_dict: dict, name):
8
+ return {'.'.join(k.split('.')[1:]): v for k, v in state_dict.items() if k.startswith(name + '.')}
9
+
10
+
11
+ def G14(s):
12
+ model = Projected(
13
+ PointPatchTransformer(512, 12, 8, 512*3, 256, 384, 0.2, 64, 6),
14
+ nn.Linear(512, 1280)
15
+ )
16
+ model.load_state_dict(module(s['state_dict'], 'module'))
17
+ return model
18
+
19
+
20
+ def L14(s):
21
+ model = Projected(
22
+ PointPatchTransformer(512, 12, 8, 1024, 128, 64, 0.4, 256, 6),
23
+ nn.Linear(512, 768)
24
+ )
25
+ model.load_state_dict(module(s, 'pc_encoder'))
26
+ return model
27
+
28
+
29
+ def B32(s):
30
+ model = PointPatchTransformer(512, 12, 8, 1024, 128, 64, 0.4, 256, 6)
31
+ model.load_state_dict(module(s, 'pc_encoder'))
32
+ return model
33
+
34
+
35
+ model_list = {
36
+ "openshape-pointbert-vitb32-rgb": B32,
37
+ "openshape-pointbert-vitl14-rgb": L14,
38
+ "openshape-pointbert-vitg14-rgb": G14,
39
+ }
40
+
41
+
42
+ def load_pc_encoder(name):
43
+ s = torch.load(hf_hub_download("OpenShape/" + name, "model.pt"), map_location='cpu')
44
+ model = model_list[name](s).eval()
45
+ if torch.cuda.is_available():
46
+ model.cuda()
47
+ return model
openshape/pointnet_util.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from time import time
5
+ import numpy as np
6
+ import dgl.geometry
7
+
8
+ def timeit(tag, t):
9
+ print("{}: {}s".format(tag, time() - t))
10
+ return time()
11
+
12
+ def pc_normalize(pc):
13
+ l = pc.shape[0]
14
+ centroid = np.mean(pc, axis=0)
15
+ pc = pc - centroid
16
+ m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
17
+ pc = pc / m
18
+ return pc
19
+
20
+ def square_distance(src, dst):
21
+ """
22
+ Calculate Euclid distance between each two points.
23
+
24
+ src^T * dst = xn * xm + yn * ym + zn * zm;
25
+ sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
26
+ sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
27
+ dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
28
+ = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
29
+
30
+ Input:
31
+ src: source points, [B, N, C]
32
+ dst: target points, [B, M, C]
33
+ Output:
34
+ dist: per-point square distance, [B, N, M]
35
+ """
36
+ B, N, _ = src.shape
37
+ _, M, _ = dst.shape
38
+ dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
39
+ dist += torch.sum(src ** 2, -1).view(B, N, 1)
40
+ dist += torch.sum(dst ** 2, -1).view(B, 1, M)
41
+ return dist
42
+
43
+
44
+ def index_points(points, idx):
45
+ """
46
+
47
+ Input:
48
+ points: input points data, [B, N, C]
49
+ idx: sample index data, [B, S]
50
+ Return:
51
+ new_points:, indexed points data, [B, S, C]
52
+ """
53
+ device = points.device
54
+ B = points.shape[0]
55
+ view_shape = list(idx.shape)
56
+ view_shape[1:] = [1] * (len(view_shape) - 1)
57
+ repeat_shape = list(idx.shape)
58
+ repeat_shape[0] = 1
59
+ batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
60
+ new_points = points[batch_indices, idx, :]
61
+ return new_points
62
+
63
+
64
+ def farthest_point_sample(xyz, npoint):
65
+ """
66
+ Input:
67
+ xyz: pointcloud data, [B, N, 3]
68
+ npoint: number of samples
69
+ Return:
70
+ centroids: sampled pointcloud index, [B, npoint]
71
+ """
72
+ return dgl.geometry.farthest_point_sampler(xyz, npoint)
73
+ device = xyz.device
74
+ B, N, C = xyz.shape
75
+ centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
76
+ distance = torch.ones(B, N).to(device) * 1e10
77
+ farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
78
+ batch_indices = torch.arange(B, dtype=torch.long).to(device)
79
+ for i in range(npoint):
80
+ centroids[:, i] = farthest
81
+ centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
82
+ dist = torch.sum((xyz - centroid) ** 2, -1)
83
+ mask = dist < distance
84
+ distance[mask] = dist[mask]
85
+ farthest = torch.max(distance, -1)[1]
86
+ return centroids
87
+
88
+
89
+ def query_ball_point(radius, nsample, xyz, new_xyz):
90
+ """
91
+ Input:
92
+ radius: local region radius
93
+ nsample: max sample number in local region
94
+ xyz: all points, [B, N, 3]
95
+ new_xyz: query points, [B, S, 3]
96
+ Return:
97
+ group_idx: grouped points index, [B, S, nsample]
98
+ """
99
+ device = xyz.device
100
+ B, N, C = xyz.shape
101
+ _, S, _ = new_xyz.shape
102
+ group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
103
+ sqrdists = square_distance(new_xyz, xyz)
104
+ group_idx[sqrdists > radius ** 2] = N
105
+ group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
106
+ group_first = group_idx[..., :1].repeat([1, 1, nsample])
107
+ mask = group_idx == N
108
+ group_idx[mask] = group_first[mask]
109
+ return group_idx
110
+
111
+
112
+ def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False):
113
+ """
114
+ Input:
115
+ npoint:
116
+ radius:
117
+ nsample:
118
+ xyz: input points position data, [B, N, 3]
119
+ points: input points data, [B, N, D]
120
+ Return:
121
+ new_xyz: sampled points position data, [B, npoint, nsample, 3]
122
+ new_points: sampled points data, [B, npoint, nsample, 3+D]
123
+ """
124
+ B, N, C = xyz.shape
125
+ S = npoint
126
+ fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint, C]
127
+ # torch.cuda.empty_cache()
128
+ new_xyz = index_points(xyz, fps_idx)
129
+ # torch.cuda.empty_cache()
130
+ idx = query_ball_point(radius, nsample, xyz, new_xyz)
131
+ # torch.cuda.empty_cache()
132
+ grouped_xyz = index_points(xyz, idx) # [B, npoint, nsample, C]
133
+ # torch.cuda.empty_cache()
134
+ grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
135
+ # torch.cuda.empty_cache()
136
+
137
+ if points is not None:
138
+ grouped_points = index_points(points, idx)
139
+ new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, npoint, nsample, C+D]
140
+ else:
141
+ new_points = grouped_xyz_norm
142
+ if returnfps:
143
+ return new_xyz, new_points, grouped_xyz, fps_idx
144
+ else:
145
+ return new_xyz, new_points
146
+
147
+
148
+ def sample_and_group_all(xyz, points):
149
+ """
150
+ Input:
151
+ xyz: input points position data, [B, N, 3]
152
+ points: input points data, [B, N, D]
153
+ Return:
154
+ new_xyz: sampled points position data, [B, 1, 3]
155
+ new_points: sampled points data, [B, 1, N, 3+D]
156
+ """
157
+ device = xyz.device
158
+ B, N, C = xyz.shape
159
+ new_xyz = torch.zeros(B, 1, C).to(device)
160
+ grouped_xyz = xyz.view(B, 1, N, C)
161
+ if points is not None:
162
+ new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1)
163
+ else:
164
+ new_points = grouped_xyz
165
+ return new_xyz, new_points
166
+
167
+
168
+ class PointNetSetAbstraction(nn.Module):
169
+ def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all):
170
+ super(PointNetSetAbstraction, self).__init__()
171
+ self.npoint = npoint
172
+ self.radius = radius
173
+ self.nsample = nsample
174
+ self.mlp_convs = nn.ModuleList()
175
+ self.mlp_bns = nn.ModuleList()
176
+ last_channel = in_channel
177
+ for out_channel in mlp:
178
+ self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))
179
+ self.mlp_bns.append(nn.BatchNorm2d(out_channel))
180
+ last_channel = out_channel
181
+ self.group_all = group_all
182
+
183
+ def forward(self, xyz, points):
184
+ """
185
+ Input:
186
+ xyz: input points position data, [B, C, N]
187
+ points: input points data, [B, D, N]
188
+ Return:
189
+ new_xyz: sampled points position data, [B, C, S]
190
+ new_points_concat: sample points feature data, [B, D', S]
191
+ """
192
+ xyz = xyz.permute(0, 2, 1)
193
+ if points is not None:
194
+ points = points.permute(0, 2, 1)
195
+
196
+ if self.group_all:
197
+ new_xyz, new_points = sample_and_group_all(xyz, points)
198
+ else:
199
+ new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points)
200
+ # new_xyz: sampled points position data, [B, npoint, C]
201
+ # new_points: sampled points data, [B, npoint, nsample, C+D]
202
+ new_points = new_points.permute(0, 3, 2, 1) # [B, C+D, nsample,npoint]
203
+ for i, conv in enumerate(self.mlp_convs):
204
+ bn = self.mlp_bns[i]
205
+ new_points = F.relu(bn(conv(new_points)))
206
+
207
+ new_points = torch.max(new_points, 2)[0]
208
+ new_xyz = new_xyz.permute(0, 2, 1)
209
+ return new_xyz, new_points
210
+
211
+
212
+ class PointNetSetAbstractionMsg(nn.Module):
213
+ def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list):
214
+ super(PointNetSetAbstractionMsg, self).__init__()
215
+ self.npoint = npoint
216
+ self.radius_list = radius_list
217
+ self.nsample_list = nsample_list
218
+ self.conv_blocks = nn.ModuleList()
219
+ self.bn_blocks = nn.ModuleList()
220
+ for i in range(len(mlp_list)):
221
+ convs = nn.ModuleList()
222
+ bns = nn.ModuleList()
223
+ last_channel = in_channel + 3
224
+ for out_channel in mlp_list[i]:
225
+ convs.append(nn.Conv2d(last_channel, out_channel, 1))
226
+ bns.append(nn.BatchNorm2d(out_channel))
227
+ last_channel = out_channel
228
+ self.conv_blocks.append(convs)
229
+ self.bn_blocks.append(bns)
230
+
231
+ def forward(self, xyz, points):
232
+ """
233
+ Input:
234
+ xyz: input points position data, [B, C, N]
235
+ points: input points data, [B, D, N]
236
+ Return:
237
+ new_xyz: sampled points position data, [B, C, S]
238
+ new_points_concat: sample points feature data, [B, D', S]
239
+ """
240
+ xyz = xyz.permute(0, 2, 1)
241
+ if points is not None:
242
+ points = points.permute(0, 2, 1)
243
+
244
+ B, N, C = xyz.shape
245
+ S = self.npoint
246
+ new_xyz = index_points(xyz, farthest_point_sample(xyz, S))
247
+ new_points_list = []
248
+ for i, radius in enumerate(self.radius_list):
249
+ K = self.nsample_list[i]
250
+ group_idx = query_ball_point(radius, K, xyz, new_xyz)
251
+ grouped_xyz = index_points(xyz, group_idx)
252
+ grouped_xyz -= new_xyz.view(B, S, 1, C)
253
+ if points is not None:
254
+ grouped_points = index_points(points, group_idx)
255
+ grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)
256
+ else:
257
+ grouped_points = grouped_xyz
258
+
259
+ grouped_points = grouped_points.permute(0, 3, 2, 1) # [B, D, K, S]
260
+ for j in range(len(self.conv_blocks[i])):
261
+ conv = self.conv_blocks[i][j]
262
+ bn = self.bn_blocks[i][j]
263
+ grouped_points = F.relu(bn(conv(grouped_points)))
264
+ new_points = torch.max(grouped_points, 2)[0] # [B, D', S]
265
+ new_points_list.append(new_points)
266
+
267
+ new_xyz = new_xyz.permute(0, 2, 1)
268
+ new_points_concat = torch.cat(new_points_list, dim=1)
269
+ return new_xyz, new_points_concat
270
+
271
+
272
+ class PointNetFeaturePropagation(nn.Module):
273
+ def __init__(self, in_channel, mlp):
274
+ super(PointNetFeaturePropagation, self).__init__()
275
+ self.mlp_convs = nn.ModuleList()
276
+ self.mlp_bns = nn.ModuleList()
277
+ last_channel = in_channel
278
+ for out_channel in mlp:
279
+ self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1))
280
+ self.mlp_bns.append(nn.BatchNorm1d(out_channel))
281
+ last_channel = out_channel
282
+
283
+ def forward(self, xyz1, xyz2, points1, points2):
284
+ """
285
+ Input:
286
+ xyz1: input points position data, [B, C, N]
287
+ xyz2: sampled input points position data, [B, C, S]
288
+ points1: input points data, [B, D, N]
289
+ points2: input points data, [B, D, S]
290
+ Return:
291
+ new_points: upsampled points data, [B, D', N]
292
+ """
293
+ xyz1 = xyz1.permute(0, 2, 1)
294
+ xyz2 = xyz2.permute(0, 2, 1)
295
+
296
+ points2 = points2.permute(0, 2, 1)
297
+ B, N, C = xyz1.shape
298
+ _, S, _ = xyz2.shape
299
+
300
+ if S == 1:
301
+ interpolated_points = points2.repeat(1, N, 1)
302
+ else:
303
+ dists = square_distance(xyz1, xyz2)
304
+ dists, idx = dists.sort(dim=-1)
305
+ dists, idx = dists[:, :, :3], idx[:, :, :3] # [B, N, 3]
306
+
307
+ dist_recip = 1.0 / (dists + 1e-8)
308
+ norm = torch.sum(dist_recip, dim=2, keepdim=True)
309
+ weight = dist_recip / norm
310
+ interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2)
311
+
312
+ if points1 is not None:
313
+ points1 = points1.permute(0, 2, 1)
314
+ new_points = torch.cat([points1, interpolated_points], dim=-1)
315
+ else:
316
+ new_points = interpolated_points
317
+
318
+ new_points = new_points.permute(0, 2, 1)
319
+ for i, conv in enumerate(self.mlp_convs):
320
+ bn = self.mlp_bns[i]
321
+ new_points = F.relu(bn(conv(new_points)))
322
+ return new_points
323
+
openshape/ppat_rgb.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch_redstone as rst
4
+ from einops import rearrange
5
+ from .pointnet_util import PointNetSetAbstraction
6
+
7
+
8
+ class PreNorm(nn.Module):
9
+ def __init__(self, dim, fn):
10
+ super().__init__()
11
+ self.norm = nn.LayerNorm(dim)
12
+ self.fn = fn
13
+ def forward(self, x, *extra_args, **kwargs):
14
+ return self.fn(self.norm(x), *extra_args, **kwargs)
15
+
16
+ class FeedForward(nn.Module):
17
+ def __init__(self, dim, hidden_dim, dropout = 0.):
18
+ super().__init__()
19
+ self.net = nn.Sequential(
20
+ nn.Linear(dim, hidden_dim),
21
+ nn.GELU(),
22
+ nn.Dropout(dropout),
23
+ nn.Linear(hidden_dim, dim),
24
+ nn.Dropout(dropout)
25
+ )
26
+ def forward(self, x):
27
+ return self.net(x)
28
+
29
+ class Attention(nn.Module):
30
+ def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., rel_pe = False):
31
+ super().__init__()
32
+ inner_dim = dim_head * heads
33
+ project_out = not (heads == 1 and dim_head == dim)
34
+
35
+ self.heads = heads
36
+ self.scale = dim_head ** -0.5
37
+
38
+ self.attend = nn.Softmax(dim = -1)
39
+ self.dropout = nn.Dropout(dropout)
40
+
41
+ self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
42
+
43
+ self.to_out = nn.Sequential(
44
+ nn.Linear(inner_dim, dim),
45
+ nn.Dropout(dropout)
46
+ ) if project_out else nn.Identity()
47
+
48
+ self.rel_pe = rel_pe
49
+ if rel_pe:
50
+ self.pe = nn.Sequential(nn.Conv2d(3, 64, 1), nn.ReLU(), nn.Conv2d(64, 1, 1))
51
+
52
+ def forward(self, x, centroid_delta):
53
+ qkv = self.to_qkv(x).chunk(3, dim = -1)
54
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
55
+
56
+ pe = self.pe(centroid_delta) if self.rel_pe else 0
57
+ dots = (torch.matmul(q, k.transpose(-1, -2)) + pe) * self.scale
58
+
59
+ attn = self.attend(dots)
60
+ attn = self.dropout(attn)
61
+
62
+ out = torch.matmul(attn, v)
63
+ out = rearrange(out, 'b h n d -> b n (h d)')
64
+ return self.to_out(out)
65
+
66
+
67
+ class Transformer(nn.Module):
68
+ def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., rel_pe = False):
69
+ super().__init__()
70
+ self.layers = nn.ModuleList([])
71
+ for _ in range(depth):
72
+ self.layers.append(nn.ModuleList([
73
+ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, rel_pe = rel_pe)),
74
+ PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
75
+ ]))
76
+ def forward(self, x, centroid_delta):
77
+ for attn, ff in self.layers:
78
+ x = attn(x, centroid_delta) + x
79
+ x = ff(x) + x
80
+ return x
81
+
82
+
83
+ class PointPatchTransformer(nn.Module):
84
+ def __init__(self, dim, depth, heads, mlp_dim, sa_dim, patches, prad, nsamp, in_dim=3, dim_head=64, rel_pe=False, patch_dropout=0) -> None:
85
+ super().__init__()
86
+ self.patches = patches
87
+ self.patch_dropout = patch_dropout
88
+ self.sa = PointNetSetAbstraction(npoint=patches, radius=prad, nsample=nsamp, in_channel=in_dim + 3, mlp=[64, 64, sa_dim], group_all=False)
89
+ self.lift = nn.Sequential(nn.Conv1d(sa_dim + 3, dim, 1), rst.Lambda(lambda x: torch.permute(x, [0, 2, 1])), nn.LayerNorm([dim]))
90
+ self.cls_token = nn.Parameter(torch.randn(dim))
91
+ self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, 0.0, rel_pe)
92
+
93
+ def forward(self, features):
94
+ self.sa.npoint = self.patches
95
+ if self.training:
96
+ self.sa.npoint -= self.patch_dropout
97
+ # print("input", features.shape)
98
+ centroids, feature = self.sa(features[:, :3], features)
99
+ # print("f", feature.shape, 'c', centroids.shape)
100
+ x = self.lift(torch.cat([centroids, feature], dim=1))
101
+
102
+ x = rst.supercat([self.cls_token, x], dim=-2)
103
+ centroids = rst.supercat([centroids.new_zeros(1), centroids], dim=-1)
104
+
105
+ centroid_delta = centroids.unsqueeze(-1) - centroids.unsqueeze(-2)
106
+ x = self.transformer(x, centroid_delta)
107
+
108
+ return x[:, 0]
109
+
110
+
111
+ class Projected(nn.Module):
112
+ def __init__(self, ppat, proj) -> None:
113
+ super().__init__()
114
+ self.ppat = ppat
115
+ self.proj = proj
116
+
117
+ def forward(self, features: torch.Tensor):
118
+ return self.proj(self.ppat(features))