Spaces:
Sleeping
Sleeping
winfred2027
commited on
Commit
•
71bb5e9
1
Parent(s):
26b3975
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,66 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
|
5 |
prog = st.progress(0.0, "Idle")
|
6 |
tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
|
@@ -13,9 +73,65 @@ tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
|
|
13 |
])
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def demo_classification():
|
17 |
with st.form("clsform"):
|
18 |
-
|
19 |
cats = st.text_input("Custom Categories (64 max, separated with comma)")
|
20 |
cats = [a.strip() for a in cats.split(',')]
|
21 |
if len(cats) > 64:
|
@@ -23,26 +139,185 @@ def demo_classification():
|
|
23 |
return
|
24 |
lvis_run = st.form_submit_button("Run Classification on LVIS Categories")
|
25 |
custom_run = st.form_submit_button("Run Classification on Custom Categories")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
def demo_captioning():
|
29 |
with st.form("capform"):
|
|
|
30 |
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def demo_pc2img():
|
33 |
with st.form("sdform"):
|
|
|
34 |
prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def demo_retrieval():
|
37 |
-
with tab_pc:
|
38 |
-
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc')
|
39 |
-
with tab_img:
|
40 |
-
with st.form("rimgform"):
|
41 |
-
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
|
42 |
with tab_text:
|
43 |
with st.form("rtextform"):
|
44 |
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext')
|
45 |
text = st.text_input("Input Text", key="inputrtext")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
try:
|
47 |
with tab_cls:
|
48 |
demo_classification()
|
|
|
1 |
+
import sys
|
2 |
+
import threading
|
3 |
import streamlit as st
|
4 |
+
from huggingface_hub import HfFolder, snapshot_download
|
5 |
|
6 |
+
|
7 |
+
@st.cache_data
|
8 |
+
def load_support():
|
9 |
+
if st.secrets.has_key('etoken'):
|
10 |
+
HfFolder().save_token(st.secrets['etoken'])
|
11 |
+
sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))
|
12 |
+
|
13 |
+
|
14 |
+
# st.set_page_config(layout='wide')
|
15 |
+
load_support()
|
16 |
+
|
17 |
+
|
18 |
+
import numpy
|
19 |
+
import torch
|
20 |
+
import openshape
|
21 |
+
import transformers
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
@st.cache_resource
|
25 |
+
def load_openshape(name, to_cpu=False):
|
26 |
+
pce = openshape.load_pc_encoder(name)
|
27 |
+
if to_cpu:
|
28 |
+
pce = pce.cpu()
|
29 |
+
return pce
|
30 |
+
|
31 |
+
|
32 |
+
@st.cache_resource
|
33 |
+
def load_openclip():
|
34 |
+
sys.clip_move_lock = threading.Lock()
|
35 |
+
clip_model, clip_prep = transformers.CLIPModel.from_pretrained(
|
36 |
+
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
37 |
+
low_cpu_mem_usage=True, torch_dtype=half,
|
38 |
+
offload_state_dict=True
|
39 |
+
), transformers.CLIPProcessor.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
40 |
+
if torch.cuda.is_available():
|
41 |
+
with sys.clip_move_lock:
|
42 |
+
clip_model.cuda()
|
43 |
+
return clip_model, clip_prep
|
44 |
+
|
45 |
+
|
46 |
+
f32 = numpy.float32
|
47 |
+
half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
|
48 |
+
# clip_model, clip_prep = None, None
|
49 |
+
clip_model, clip_prep = load_openclip()
|
50 |
+
model_b32 = load_openshape('openshape-pointbert-vitb32-rgb', True)
|
51 |
+
model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
|
52 |
+
model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
|
53 |
+
torch.set_grad_enabled(False)
|
54 |
+
for kc, vc in st.session_state.get('state_queue', []):
|
55 |
+
st.session_state[kc] = vc
|
56 |
+
st.session_state.state_queue = []
|
57 |
+
|
58 |
+
|
59 |
+
import samples_index
|
60 |
+
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
|
61 |
+
|
62 |
+
|
63 |
+
st.title("OpenShape Demo")
|
64 |
st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
|
65 |
prog = st.progress(0.0, "Idle")
|
66 |
tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
|
|
|
73 |
])
|
74 |
|
75 |
|
76 |
+
def sq(kc, vc):
|
77 |
+
st.session_state.state_queue.append((kc, vc))
|
78 |
+
|
79 |
+
|
80 |
+
def reset_3d_shape_input(key):
|
81 |
+
# this is not working due to streamlit problems, don't use it
|
82 |
+
model_key = key + "_model"
|
83 |
+
npy_key = key + "_npy"
|
84 |
+
swap_key = key + "_swap"
|
85 |
+
sq(model_key, None)
|
86 |
+
sq(npy_key, None)
|
87 |
+
sq(swap_key, "Y is up (for most Objaverse shapes)")
|
88 |
+
|
89 |
+
|
90 |
+
def auto_submit(key):
|
91 |
+
if st.session_state.get(key):
|
92 |
+
st.session_state[key] = False
|
93 |
+
return True
|
94 |
+
return False
|
95 |
+
|
96 |
+
|
97 |
+
def queue_auto_submit(key):
|
98 |
+
st.session_state[key] = True
|
99 |
+
st.experimental_rerun()
|
100 |
+
|
101 |
+
|
102 |
+
img_example_counter = 0
|
103 |
+
|
104 |
+
|
105 |
+
def image_examples(samples, ncols, return_key=None, example_text="Examples"):
|
106 |
+
global img_example_counter
|
107 |
+
trigger = False
|
108 |
+
with st.expander(example_text, True):
|
109 |
+
for i in range(len(samples) // ncols):
|
110 |
+
cols = st.columns(ncols)
|
111 |
+
for j in range(ncols):
|
112 |
+
idx = i * ncols + j
|
113 |
+
if idx >= len(samples):
|
114 |
+
continue
|
115 |
+
entry = samples[idx]
|
116 |
+
with cols[j]:
|
117 |
+
st.image(entry['dispi'])
|
118 |
+
img_example_counter += 1
|
119 |
+
with st.columns(5)[2]:
|
120 |
+
this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
|
121 |
+
trigger = trigger or this_trigger
|
122 |
+
if this_trigger:
|
123 |
+
if return_key is None:
|
124 |
+
for k, v in entry.items():
|
125 |
+
if not k.startswith('disp'):
|
126 |
+
sq(k, v)
|
127 |
+
else:
|
128 |
+
trigger = entry[return_key]
|
129 |
+
return trigger
|
130 |
+
|
131 |
+
|
132 |
def demo_classification():
|
133 |
with st.form("clsform"):
|
134 |
+
load_data = misc_utils.input_3d_shape('cls')
|
135 |
cats = st.text_input("Custom Categories (64 max, separated with comma)")
|
136 |
cats = [a.strip() for a in cats.split(',')]
|
137 |
if len(cats) > 64:
|
|
|
139 |
return
|
140 |
lvis_run = st.form_submit_button("Run Classification on LVIS Categories")
|
141 |
custom_run = st.form_submit_button("Run Classification on Custom Categories")
|
142 |
+
if lvis_run or auto_submit("clsauto"):
|
143 |
+
pc = load_data(prog)
|
144 |
+
col2 = misc_utils.render_pc(pc)
|
145 |
+
prog.progress(0.5, "Running Classification")
|
146 |
+
pred = classification.pred_lvis_sims(model_g14, pc)
|
147 |
+
with col2:
|
148 |
+
for i, (cat, sim) in zip(range(5), pred.items()):
|
149 |
+
st.text(cat)
|
150 |
+
st.caption("Similarity %.4f" % sim)
|
151 |
+
prog.progress(1.0, "Idle")
|
152 |
+
if custom_run:
|
153 |
+
pc = load_data(prog)
|
154 |
+
col2 = misc_utils.render_pc(pc)
|
155 |
+
prog.progress(0.5, "Computing Category Embeddings")
|
156 |
+
device = clip_model.device
|
157 |
+
tn = clip_prep(text=cats, return_tensors='pt', truncation=True, max_length=76, padding=True).to(device)
|
158 |
+
feats = clip_model.get_text_features(**tn).float().cpu()
|
159 |
+
prog.progress(0.5, "Running Classification")
|
160 |
+
pred = classification.pred_custom_sims(model_g14, pc, cats, feats)
|
161 |
+
with col2:
|
162 |
+
for i, (cat, sim) in zip(range(5), pred.items()):
|
163 |
+
st.text(cat)
|
164 |
+
st.caption("Similarity %.4f" % sim)
|
165 |
+
prog.progress(1.0, "Idle")
|
166 |
+
if image_examples(samples_index.classification, 3, example_text="Examples (Choose one of the following 3D shapes)"):
|
167 |
+
queue_auto_submit("clsauto")
|
168 |
|
169 |
|
170 |
def demo_captioning():
|
171 |
with st.form("capform"):
|
172 |
+
load_data = misc_utils.input_3d_shape('cap')
|
173 |
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
|
174 |
+
if st.form_submit_button("Generate a Caption") or auto_submit("capauto"):
|
175 |
+
pc = load_data(prog)
|
176 |
+
col2 = misc_utils.render_pc(pc)
|
177 |
+
prog.progress(0.5, "Running Generation")
|
178 |
+
cap = caption.pc_caption(model_b32, pc, cond_scale)
|
179 |
+
st.text(cap)
|
180 |
+
prog.progress(1.0, "Idle")
|
181 |
+
if image_examples(samples_index.cap, 3, example_text="Examples (Choose one of the following 3D shapes)"):
|
182 |
+
queue_auto_submit("capauto")
|
183 |
+
|
184 |
|
185 |
def demo_pc2img():
|
186 |
with st.form("sdform"):
|
187 |
+
load_data = misc_utils.input_3d_shape('sd')
|
188 |
prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
|
189 |
+
noise_scale = st.slider('Variation Level', 0, 5, 1)
|
190 |
+
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
|
191 |
+
steps = st.slider('Diffusion Steps', 8, 50, 25)
|
192 |
+
width = 640 # st.slider('Width', 480, 640, step=32)
|
193 |
+
height = 640 # st.slider('Height', 480, 640, step=32)
|
194 |
+
if st.form_submit_button("Generate") or auto_submit("sdauto"):
|
195 |
+
pc = load_data(prog)
|
196 |
+
col2 = misc_utils.render_pc(pc)
|
197 |
+
prog.progress(0.49, "Running Generation")
|
198 |
+
if torch.cuda.is_available():
|
199 |
+
with sys.clip_move_lock:
|
200 |
+
clip_model.cpu()
|
201 |
+
img = sd_pc2img.pc_to_image(
|
202 |
+
model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
|
203 |
+
lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
|
204 |
+
)
|
205 |
+
if torch.cuda.is_available():
|
206 |
+
with sys.clip_move_lock:
|
207 |
+
clip_model.cuda()
|
208 |
+
with col2:
|
209 |
+
st.image(img)
|
210 |
+
prog.progress(1.0, "Idle")
|
211 |
+
if image_examples(samples_index.sd, 3, example_text="Examples (Choose one of the following 3D shapes)"):
|
212 |
+
queue_auto_submit("sdauto")
|
213 |
+
|
214 |
+
|
215 |
+
def retrieval_results(results):
|
216 |
+
st.caption("Click the link to view the 3D shape")
|
217 |
+
for i in range(len(results) // 4):
|
218 |
+
cols = st.columns(4)
|
219 |
+
for j in range(4):
|
220 |
+
idx = i * 4 + j
|
221 |
+
if idx >= len(results):
|
222 |
+
continue
|
223 |
+
entry = results[idx]
|
224 |
+
with cols[j]:
|
225 |
+
ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
|
226 |
+
st.image(entry['img'])
|
227 |
+
# st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
|
228 |
+
# st.text(entry['name'])
|
229 |
+
quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
|
230 |
+
st.markdown(f"[{quote_name}]({ext_link})")
|
231 |
+
|
232 |
+
|
233 |
+
def retrieval_filter_expand(key):
|
234 |
+
with st.expander("Filters"):
|
235 |
+
sim_th = st.slider("Similarity Threshold", 0.05, 0.5, 0.1, key=key + 'rtsimth')
|
236 |
+
tag = st.text_input("Has Tag", "", key=key + 'rthastag')
|
237 |
+
col1, col2 = st.columns(2)
|
238 |
+
face_min = int(col1.text_input("Face Count Min", "0", key=key + 'rtfcmin'))
|
239 |
+
face_max = int(col2.text_input("Face Count Max", "34985808", key=key + 'rtfcmax'))
|
240 |
+
col1, col2 = st.columns(2)
|
241 |
+
anim_min = int(col1.text_input("Animation Count Min", "0", key=key + 'rtacmin'))
|
242 |
+
anim_max = int(col2.text_input("Animation Count Max", "563", key=key + 'rtacmax'))
|
243 |
+
tag_n = not bool(tag.strip())
|
244 |
+
anim_n = not (anim_min > 0 or anim_max < 563)
|
245 |
+
face_n = not (face_min > 0 or face_max < 34985808)
|
246 |
+
filter_fn = lambda x: (
|
247 |
+
(anim_n or anim_min <= x['anims'] <= anim_max)
|
248 |
+
and (face_n or face_min <= x['faces'] <= face_max)
|
249 |
+
and (tag_n or tag in x['tags'])
|
250 |
+
)
|
251 |
+
return sim_th, filter_fn
|
252 |
+
|
253 |
|
254 |
def demo_retrieval():
|
|
|
|
|
|
|
|
|
|
|
255 |
with tab_text:
|
256 |
with st.form("rtextform"):
|
257 |
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext')
|
258 |
text = st.text_input("Input Text", key="inputrtext")
|
259 |
+
sim_th, filter_fn = retrieval_filter_expand('text')
|
260 |
+
if st.form_submit_button("Run with Text") or auto_submit("rtextauto"):
|
261 |
+
prog.progress(0.49, "Computing Embeddings")
|
262 |
+
device = clip_model.device
|
263 |
+
tn = clip_prep(
|
264 |
+
text=[text], return_tensors='pt', truncation=True, max_length=76
|
265 |
+
).to(device)
|
266 |
+
enc = clip_model.get_text_features(**tn).float().cpu()
|
267 |
+
prog.progress(0.7, "Running Retrieval")
|
268 |
+
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
|
269 |
+
prog.progress(1.0, "Idle")
|
270 |
+
picked_sample = st.selectbox("Examples", ["Select..."] + samples_index.retrieval_texts)
|
271 |
+
text_last_example = st.session_state.get('text_last_example', None)
|
272 |
+
if text_last_example is None:
|
273 |
+
st.session_state.text_last_example = picked_sample
|
274 |
+
elif text_last_example != picked_sample and picked_sample != "Select...":
|
275 |
+
st.session_state.text_last_example = picked_sample
|
276 |
+
sq("inputrtext", picked_sample)
|
277 |
+
queue_auto_submit("rtextauto")
|
278 |
+
|
279 |
+
with tab_img:
|
280 |
+
submit = False
|
281 |
+
with st.form("rimgform"):
|
282 |
+
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
|
283 |
+
pic = st.file_uploader("Upload an Image", key='rimageinput')
|
284 |
+
sim_th, filter_fn = retrieval_filter_expand('image')
|
285 |
+
if st.form_submit_button("Run with Image"):
|
286 |
+
submit = True
|
287 |
+
results_container = st.container()
|
288 |
+
sample_got = image_examples(samples_index.iret, 4, 'rimageinput')
|
289 |
+
if sample_got:
|
290 |
+
pic = sample_got
|
291 |
+
if sample_got or submit:
|
292 |
+
img = Image.open(pic)
|
293 |
+
with results_container:
|
294 |
+
st.image(img)
|
295 |
+
prog.progress(0.49, "Computing Embeddings")
|
296 |
+
device = clip_model.device
|
297 |
+
tn = clip_prep(images=[img], return_tensors="pt").to(device)
|
298 |
+
enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
|
299 |
+
prog.progress(0.7, "Running Retrieval")
|
300 |
+
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
|
301 |
+
prog.progress(1.0, "Idle")
|
302 |
+
|
303 |
+
with tab_pc:
|
304 |
+
with st.form("rpcform"):
|
305 |
+
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc')
|
306 |
+
load_data = misc_utils.input_3d_shape('retpc')
|
307 |
+
sim_th, filter_fn = retrieval_filter_expand('pc')
|
308 |
+
if st.form_submit_button("Run with Shape") or auto_submit('rpcauto'):
|
309 |
+
pc = load_data(prog)
|
310 |
+
col2 = misc_utils.render_pc(pc)
|
311 |
+
prog.progress(0.49, "Computing Embeddings")
|
312 |
+
ref_dev = next(model_g14.parameters()).device
|
313 |
+
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
|
314 |
+
prog.progress(0.7, "Running Retrieval")
|
315 |
+
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
|
316 |
+
prog.progress(1.0, "Idle")
|
317 |
+
if image_examples(samples_index.pret, 3):
|
318 |
+
queue_auto_submit("rpcauto")
|
319 |
+
|
320 |
+
|
321 |
try:
|
322 |
with tab_cls:
|
323 |
demo_classification()
|