winfred2027 commited on
Commit
71bb5e9
1 Parent(s): 26b3975

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +282 -7
app.py CHANGED
@@ -1,6 +1,66 @@
 
 
1
  import streamlit as st
 
2
 
3
- st.title("TripletMix Demo")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
5
  prog = st.progress(0.0, "Idle")
6
  tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
@@ -13,9 +73,65 @@ tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
13
  ])
14
 
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def demo_classification():
17
  with st.form("clsform"):
18
- #load_data = misc_utils.input_3d_shape('cls')
19
  cats = st.text_input("Custom Categories (64 max, separated with comma)")
20
  cats = [a.strip() for a in cats.split(',')]
21
  if len(cats) > 64:
@@ -23,26 +139,185 @@ def demo_classification():
23
  return
24
  lvis_run = st.form_submit_button("Run Classification on LVIS Categories")
25
  custom_run = st.form_submit_button("Run Classification on Custom Categories")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
 
28
  def demo_captioning():
29
  with st.form("capform"):
 
30
  cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
 
 
 
 
 
 
 
 
 
 
31
 
32
  def demo_pc2img():
33
  with st.form("sdform"):
 
34
  prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  def demo_retrieval():
37
- with tab_pc:
38
- k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc')
39
- with tab_img:
40
- with st.form("rimgform"):
41
- k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
42
  with tab_text:
43
  with st.form("rtextform"):
44
  k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext')
45
  text = st.text_input("Input Text", key="inputrtext")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  try:
47
  with tab_cls:
48
  demo_classification()
 
1
+ import sys
2
+ import threading
3
  import streamlit as st
4
+ from huggingface_hub import HfFolder, snapshot_download
5
 
6
+
7
+ @st.cache_data
8
+ def load_support():
9
+ if st.secrets.has_key('etoken'):
10
+ HfFolder().save_token(st.secrets['etoken'])
11
+ sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))
12
+
13
+
14
+ # st.set_page_config(layout='wide')
15
+ load_support()
16
+
17
+
18
+ import numpy
19
+ import torch
20
+ import openshape
21
+ import transformers
22
+ from PIL import Image
23
+
24
+ @st.cache_resource
25
+ def load_openshape(name, to_cpu=False):
26
+ pce = openshape.load_pc_encoder(name)
27
+ if to_cpu:
28
+ pce = pce.cpu()
29
+ return pce
30
+
31
+
32
+ @st.cache_resource
33
+ def load_openclip():
34
+ sys.clip_move_lock = threading.Lock()
35
+ clip_model, clip_prep = transformers.CLIPModel.from_pretrained(
36
+ "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
37
+ low_cpu_mem_usage=True, torch_dtype=half,
38
+ offload_state_dict=True
39
+ ), transformers.CLIPProcessor.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
40
+ if torch.cuda.is_available():
41
+ with sys.clip_move_lock:
42
+ clip_model.cuda()
43
+ return clip_model, clip_prep
44
+
45
+
46
+ f32 = numpy.float32
47
+ half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
48
+ # clip_model, clip_prep = None, None
49
+ clip_model, clip_prep = load_openclip()
50
+ model_b32 = load_openshape('openshape-pointbert-vitb32-rgb', True)
51
+ model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
52
+ model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
53
+ torch.set_grad_enabled(False)
54
+ for kc, vc in st.session_state.get('state_queue', []):
55
+ st.session_state[kc] = vc
56
+ st.session_state.state_queue = []
57
+
58
+
59
+ import samples_index
60
+ from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
61
+
62
+
63
+ st.title("OpenShape Demo")
64
  st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
65
  prog = st.progress(0.0, "Idle")
66
  tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
 
73
  ])
74
 
75
 
76
+ def sq(kc, vc):
77
+ st.session_state.state_queue.append((kc, vc))
78
+
79
+
80
+ def reset_3d_shape_input(key):
81
+ # this is not working due to streamlit problems, don't use it
82
+ model_key = key + "_model"
83
+ npy_key = key + "_npy"
84
+ swap_key = key + "_swap"
85
+ sq(model_key, None)
86
+ sq(npy_key, None)
87
+ sq(swap_key, "Y is up (for most Objaverse shapes)")
88
+
89
+
90
+ def auto_submit(key):
91
+ if st.session_state.get(key):
92
+ st.session_state[key] = False
93
+ return True
94
+ return False
95
+
96
+
97
+ def queue_auto_submit(key):
98
+ st.session_state[key] = True
99
+ st.experimental_rerun()
100
+
101
+
102
+ img_example_counter = 0
103
+
104
+
105
+ def image_examples(samples, ncols, return_key=None, example_text="Examples"):
106
+ global img_example_counter
107
+ trigger = False
108
+ with st.expander(example_text, True):
109
+ for i in range(len(samples) // ncols):
110
+ cols = st.columns(ncols)
111
+ for j in range(ncols):
112
+ idx = i * ncols + j
113
+ if idx >= len(samples):
114
+ continue
115
+ entry = samples[idx]
116
+ with cols[j]:
117
+ st.image(entry['dispi'])
118
+ img_example_counter += 1
119
+ with st.columns(5)[2]:
120
+ this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
121
+ trigger = trigger or this_trigger
122
+ if this_trigger:
123
+ if return_key is None:
124
+ for k, v in entry.items():
125
+ if not k.startswith('disp'):
126
+ sq(k, v)
127
+ else:
128
+ trigger = entry[return_key]
129
+ return trigger
130
+
131
+
132
  def demo_classification():
133
  with st.form("clsform"):
134
+ load_data = misc_utils.input_3d_shape('cls')
135
  cats = st.text_input("Custom Categories (64 max, separated with comma)")
136
  cats = [a.strip() for a in cats.split(',')]
137
  if len(cats) > 64:
 
139
  return
140
  lvis_run = st.form_submit_button("Run Classification on LVIS Categories")
141
  custom_run = st.form_submit_button("Run Classification on Custom Categories")
142
+ if lvis_run or auto_submit("clsauto"):
143
+ pc = load_data(prog)
144
+ col2 = misc_utils.render_pc(pc)
145
+ prog.progress(0.5, "Running Classification")
146
+ pred = classification.pred_lvis_sims(model_g14, pc)
147
+ with col2:
148
+ for i, (cat, sim) in zip(range(5), pred.items()):
149
+ st.text(cat)
150
+ st.caption("Similarity %.4f" % sim)
151
+ prog.progress(1.0, "Idle")
152
+ if custom_run:
153
+ pc = load_data(prog)
154
+ col2 = misc_utils.render_pc(pc)
155
+ prog.progress(0.5, "Computing Category Embeddings")
156
+ device = clip_model.device
157
+ tn = clip_prep(text=cats, return_tensors='pt', truncation=True, max_length=76, padding=True).to(device)
158
+ feats = clip_model.get_text_features(**tn).float().cpu()
159
+ prog.progress(0.5, "Running Classification")
160
+ pred = classification.pred_custom_sims(model_g14, pc, cats, feats)
161
+ with col2:
162
+ for i, (cat, sim) in zip(range(5), pred.items()):
163
+ st.text(cat)
164
+ st.caption("Similarity %.4f" % sim)
165
+ prog.progress(1.0, "Idle")
166
+ if image_examples(samples_index.classification, 3, example_text="Examples (Choose one of the following 3D shapes)"):
167
+ queue_auto_submit("clsauto")
168
 
169
 
170
  def demo_captioning():
171
  with st.form("capform"):
172
+ load_data = misc_utils.input_3d_shape('cap')
173
  cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
174
+ if st.form_submit_button("Generate a Caption") or auto_submit("capauto"):
175
+ pc = load_data(prog)
176
+ col2 = misc_utils.render_pc(pc)
177
+ prog.progress(0.5, "Running Generation")
178
+ cap = caption.pc_caption(model_b32, pc, cond_scale)
179
+ st.text(cap)
180
+ prog.progress(1.0, "Idle")
181
+ if image_examples(samples_index.cap, 3, example_text="Examples (Choose one of the following 3D shapes)"):
182
+ queue_auto_submit("capauto")
183
+
184
 
185
  def demo_pc2img():
186
  with st.form("sdform"):
187
+ load_data = misc_utils.input_3d_shape('sd')
188
  prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
189
+ noise_scale = st.slider('Variation Level', 0, 5, 1)
190
+ cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
191
+ steps = st.slider('Diffusion Steps', 8, 50, 25)
192
+ width = 640 # st.slider('Width', 480, 640, step=32)
193
+ height = 640 # st.slider('Height', 480, 640, step=32)
194
+ if st.form_submit_button("Generate") or auto_submit("sdauto"):
195
+ pc = load_data(prog)
196
+ col2 = misc_utils.render_pc(pc)
197
+ prog.progress(0.49, "Running Generation")
198
+ if torch.cuda.is_available():
199
+ with sys.clip_move_lock:
200
+ clip_model.cpu()
201
+ img = sd_pc2img.pc_to_image(
202
+ model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
203
+ lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
204
+ )
205
+ if torch.cuda.is_available():
206
+ with sys.clip_move_lock:
207
+ clip_model.cuda()
208
+ with col2:
209
+ st.image(img)
210
+ prog.progress(1.0, "Idle")
211
+ if image_examples(samples_index.sd, 3, example_text="Examples (Choose one of the following 3D shapes)"):
212
+ queue_auto_submit("sdauto")
213
+
214
+
215
+ def retrieval_results(results):
216
+ st.caption("Click the link to view the 3D shape")
217
+ for i in range(len(results) // 4):
218
+ cols = st.columns(4)
219
+ for j in range(4):
220
+ idx = i * 4 + j
221
+ if idx >= len(results):
222
+ continue
223
+ entry = results[idx]
224
+ with cols[j]:
225
+ ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
226
+ st.image(entry['img'])
227
+ # st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
228
+ # st.text(entry['name'])
229
+ quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
230
+ st.markdown(f"[{quote_name}]({ext_link})")
231
+
232
+
233
+ def retrieval_filter_expand(key):
234
+ with st.expander("Filters"):
235
+ sim_th = st.slider("Similarity Threshold", 0.05, 0.5, 0.1, key=key + 'rtsimth')
236
+ tag = st.text_input("Has Tag", "", key=key + 'rthastag')
237
+ col1, col2 = st.columns(2)
238
+ face_min = int(col1.text_input("Face Count Min", "0", key=key + 'rtfcmin'))
239
+ face_max = int(col2.text_input("Face Count Max", "34985808", key=key + 'rtfcmax'))
240
+ col1, col2 = st.columns(2)
241
+ anim_min = int(col1.text_input("Animation Count Min", "0", key=key + 'rtacmin'))
242
+ anim_max = int(col2.text_input("Animation Count Max", "563", key=key + 'rtacmax'))
243
+ tag_n = not bool(tag.strip())
244
+ anim_n = not (anim_min > 0 or anim_max < 563)
245
+ face_n = not (face_min > 0 or face_max < 34985808)
246
+ filter_fn = lambda x: (
247
+ (anim_n or anim_min <= x['anims'] <= anim_max)
248
+ and (face_n or face_min <= x['faces'] <= face_max)
249
+ and (tag_n or tag in x['tags'])
250
+ )
251
+ return sim_th, filter_fn
252
+
253
 
254
  def demo_retrieval():
 
 
 
 
 
255
  with tab_text:
256
  with st.form("rtextform"):
257
  k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext')
258
  text = st.text_input("Input Text", key="inputrtext")
259
+ sim_th, filter_fn = retrieval_filter_expand('text')
260
+ if st.form_submit_button("Run with Text") or auto_submit("rtextauto"):
261
+ prog.progress(0.49, "Computing Embeddings")
262
+ device = clip_model.device
263
+ tn = clip_prep(
264
+ text=[text], return_tensors='pt', truncation=True, max_length=76
265
+ ).to(device)
266
+ enc = clip_model.get_text_features(**tn).float().cpu()
267
+ prog.progress(0.7, "Running Retrieval")
268
+ retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
269
+ prog.progress(1.0, "Idle")
270
+ picked_sample = st.selectbox("Examples", ["Select..."] + samples_index.retrieval_texts)
271
+ text_last_example = st.session_state.get('text_last_example', None)
272
+ if text_last_example is None:
273
+ st.session_state.text_last_example = picked_sample
274
+ elif text_last_example != picked_sample and picked_sample != "Select...":
275
+ st.session_state.text_last_example = picked_sample
276
+ sq("inputrtext", picked_sample)
277
+ queue_auto_submit("rtextauto")
278
+
279
+ with tab_img:
280
+ submit = False
281
+ with st.form("rimgform"):
282
+ k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
283
+ pic = st.file_uploader("Upload an Image", key='rimageinput')
284
+ sim_th, filter_fn = retrieval_filter_expand('image')
285
+ if st.form_submit_button("Run with Image"):
286
+ submit = True
287
+ results_container = st.container()
288
+ sample_got = image_examples(samples_index.iret, 4, 'rimageinput')
289
+ if sample_got:
290
+ pic = sample_got
291
+ if sample_got or submit:
292
+ img = Image.open(pic)
293
+ with results_container:
294
+ st.image(img)
295
+ prog.progress(0.49, "Computing Embeddings")
296
+ device = clip_model.device
297
+ tn = clip_prep(images=[img], return_tensors="pt").to(device)
298
+ enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
299
+ prog.progress(0.7, "Running Retrieval")
300
+ retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
301
+ prog.progress(1.0, "Idle")
302
+
303
+ with tab_pc:
304
+ with st.form("rpcform"):
305
+ k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc')
306
+ load_data = misc_utils.input_3d_shape('retpc')
307
+ sim_th, filter_fn = retrieval_filter_expand('pc')
308
+ if st.form_submit_button("Run with Shape") or auto_submit('rpcauto'):
309
+ pc = load_data(prog)
310
+ col2 = misc_utils.render_pc(pc)
311
+ prog.progress(0.49, "Computing Embeddings")
312
+ ref_dev = next(model_g14.parameters()).device
313
+ enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
314
+ prog.progress(0.7, "Running Retrieval")
315
+ retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
316
+ prog.progress(1.0, "Idle")
317
+ if image_examples(samples_index.pret, 3):
318
+ queue_auto_submit("rpcauto")
319
+
320
+
321
  try:
322
  with tab_cls:
323
  demo_classification()