import torch.nn as nn class MLP(nn.Module): def __init__(self, in_out_features, hidden_features=512, drop=0.2): super().__init__() self.classifier = nn.Sequential( nn.Linear(in_out_features, hidden_features), nn.BatchNorm1d(hidden_features), nn.GELU(), nn.Dropout(drop), nn.Linear(hidden_features, in_out_features), nn.BatchNorm1d(in_out_features), nn.GELU(), nn.Dropout(drop), ) def forward(self, x): return self.classifier(x)