Spaces:
Sleeping
Sleeping
TroglodyteDerivations
commited on
Commit
•
cecd987
1
Parent(s):
a245734
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
import yolov9
|
4 |
+
|
5 |
+
class Inference_Nascent_Spawning_Deriving_From_YOLOv9:
|
6 |
+
def __init__(self):
|
7 |
+
self.model = None
|
8 |
+
self.model_path = None
|
9 |
+
self.image_size = None
|
10 |
+
self.conf_threshold = None
|
11 |
+
self.iou_threshold = None
|
12 |
+
|
13 |
+
# Object behavior / Method -> 1
|
14 |
+
def download_models(self, model_id):
|
15 |
+
hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./")
|
16 |
+
return f"./{model_id}"
|
17 |
+
|
18 |
+
# Object behavior / Method -> 2
|
19 |
+
def load_model(self, model_id):
|
20 |
+
self.model_path = self.download_models(model_id)
|
21 |
+
self.model = yolov9.load(self.model_path, device="cuda:0")
|
22 |
+
|
23 |
+
# Object behavior / Method -> 3
|
24 |
+
def configure_model(self, conf_threshold, iou_threshold):
|
25 |
+
self.conf_threshold = conf_threshold
|
26 |
+
self.iou_threshold = iou_threshold
|
27 |
+
self.model.conf = self.conf_threshold
|
28 |
+
self.model.iou = self.iou_threshold
|
29 |
+
|
30 |
+
# Object behavior / Method -> 4
|
31 |
+
def perform_inference(self, img_path, image_size):
|
32 |
+
self.image_size = image_size
|
33 |
+
results = self.model(img_path, size=self.image_size)
|
34 |
+
output = results.render()
|
35 |
+
return output[0]
|
36 |
+
|
37 |
+
# Object behavior / Method -> 5
|
38 |
+
# Note: 5 is a method deriving from within the class with the name
|
39 |
+
# Inference_Nascent_Spawning_Deriving_From_YOLOv9
|
40 |
+
# One can also declare outside of the OOP as a function, which in turn,
|
41 |
+
# calls the methods inside of the OOP leveraging the functionality
|
42 |
+
# fostering from each unique Object behavior / Method
|
43 |
+
# Personal preferecnce -> This instantiation from within OOP
|
44 |
+
def launch_gradio_app(self):
|
45 |
+
with gr.Blocks() as gradio_app:
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column():
|
48 |
+
img_path = gr.Image(type='filepath', label='Image')
|
49 |
+
model_id = gr.Dropdown(
|
50 |
+
label="Model",
|
51 |
+
choices=[
|
52 |
+
"gelan-c.pt",
|
53 |
+
"gelan-e.pt",
|
54 |
+
"yolov9-c.pt",
|
55 |
+
"yolov9-e.pt",
|
56 |
+
],
|
57 |
+
value="gelan-e.pt",
|
58 |
+
)
|
59 |
+
image_size = gr.Slider(
|
60 |
+
label="Image Size",
|
61 |
+
minimum=320,
|
62 |
+
maximum=1280,
|
63 |
+
step=32,
|
64 |
+
value=640, # Default value of 640 foments higher percentage obverse the image detection
|
65 |
+
)
|
66 |
+
conf_threshold = gr.Slider(
|
67 |
+
label="Confidence Threshold",
|
68 |
+
minimum=0.1,
|
69 |
+
maximum=1.0,
|
70 |
+
step=0.1,
|
71 |
+
value=0.4,
|
72 |
+
)
|
73 |
+
iou_threshold = gr.Slider(
|
74 |
+
label="IoU Threshold",
|
75 |
+
minimum=0.1,
|
76 |
+
maximum=1.0,
|
77 |
+
step=0.1,
|
78 |
+
value=0.5,
|
79 |
+
)
|
80 |
+
yolov9_infer = gr.Button(value="Inference")
|
81 |
+
|
82 |
+
with gr.Column():
|
83 |
+
output_numpy = gr.Image(type="numpy", label="Output")
|
84 |
+
|
85 |
+
# yolov9_infer leveraging click functionality
|
86 |
+
# Resembles iface = gr.Interface(
|
87 |
+
#fn=...
|
88 |
+
#inputs=[],
|
89 |
+
#outputs=[],
|
90 |
+
yolov9_infer.click(
|
91 |
+
fn=self.perform_inference,
|
92 |
+
inputs=[
|
93 |
+
img_path,
|
94 |
+
model_id,
|
95 |
+
image_size,
|
96 |
+
conf_threshold,
|
97 |
+
iou_threshold,
|
98 |
+
],
|
99 |
+
outputs=[output_numpy],
|
100 |
+
)
|
101 |
+
|
102 |
+
gr.Examples(
|
103 |
+
examples=[
|
104 |
+
["cow.jpeg", "gelan-e.pt", 640, 0.4, 0.5],
|
105 |
+
["techengue_GTA.png", "yolov9-c.pt", 640, 0.4, 0.5],
|
106 |
+
],
|
107 |
+
fn=self.perform_inference,
|
108 |
+
inputs=[
|
109 |
+
img_path,
|
110 |
+
model_id,
|
111 |
+
image_size,
|
112 |
+
conf_threshold,
|
113 |
+
iou_threshold,
|
114 |
+
].
|
115 |
+
outputs=[output_numpy],
|
116 |
+
cache_examples=True,
|
117 |
+
)
|
118 |
+
|
119 |
+
gr.HTML(
|
120 |
+
"""
|
121 |
+
<h1 style='text-align: center'>
|
122 |
+
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
|
123 |
+
</h1>
|
124 |
+
"""
|
125 |
+
)
|
126 |
+
|
127 |
+
gr.HTML(
|
128 |
+
"""
|
129 |
+
<h3 style='text-align: center'>
|
130 |
+
Expound further notions regarding this topic at:
|
131 |
+
https://doi.org/10.48550/arXiv.2402.13616
|
132 |
+
""")
|
133 |
+
|
134 |
+
gradio_app.launch(debug=True)
|
135 |
+
|
136 |
+
# Instantiate the class and launch the Gradio app
|
137 |
+
yolo_inference = Inference_Nascent_Spawning_Deriving_From_YOLOv9()
|
138 |
+
yolo_inference.launch_gradio_app()
|