Spaces:
Sleeping
Sleeping
# Import necessary libraries | |
import streamlit as st | |
import pandas as pd | |
import altair as alt | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from scipy.stats import zscore | |
from sklearn.preprocessing import LabelEncoder, StandardScaler | |
from sklearn.decomposition import PCA | |
from sklearn.cluster import KMeans, AgglomerativeClustering | |
from scipy.spatial.distance import cdist | |
from scipy.cluster.hierarchy import dendrogram, linkage | |
# Function to load and clean data | |
def load_and_clean_data(file_path): | |
# Load data | |
df_kiva_loans = pd.read_csv(file_path) | |
# Clean data | |
df_kiva_loans = df_kiva_loans.drop(['use', 'disbursed_time', 'funded_time', 'posted_time', 'tags'], axis=1) | |
df_kiva_loans.dropna(subset=['partner_id', 'borrower_genders'], inplace=True) | |
# Calculate Z-scores | |
z_scores = zscore(df_kiva_loans['funded_amount']) | |
df_kiva_loans['outlier_funded_amount'] = (z_scores > 3) | (z_scores < -3) | |
df_kiva_loans_cleaned = df_kiva_loans[~df_kiva_loans['outlier_funded_amount']] | |
return df_kiva_loans_cleaned | |
# Load the cleaned data | |
file_path = 'kiva_loans.csv' | |
df_kiva_loans_cleaned = load_and_clean_data(file_path) | |
# Streamlit App Title | |
st.title('BDS24_Weekly_Assignment_Week 2 | Tryfonas Karmiris') | |
# Sidebar for navigation | |
st.sidebar.title("Navigation") | |
page = st.sidebar.radio("Select a page:", ["Introduction", "Data Overview", "Top Values by Selected Variable", "Repayment Interval by Selected Variable", "Country Comparison Deepdive", "Sector Comparison Deepdive", "KMeans Clustering & Recommendations","Hierarchical Clustering & Dendrogram"]) | |
# Introduction Page | |
if page == "Introduction": | |
st.subheader("Introduction") | |
st.write(""" | |
This application provides insights into Kiva loans data. | |
You can explore the distribution of funded amounts, | |
analyze top values by selected variables, and visualize | |
relationships between funded amounts and various factors such as Countries and Sectors that the loans were funded. | |
""") | |
# Data Overview Page | |
elif page == "Data Overview": | |
st.subheader("Data Overview") | |
st.write("Here is a preview of the cleaned Kiva loans data:") | |
# Display the cleaned data table | |
st.table(df_kiva_loans_cleaned.head()) | |
# Distribution of Funded Amounts | |
st.subheader('Distribution of Funded Amounts') | |
chart = alt.Chart(df_kiva_loans_cleaned).mark_bar().encode( | |
alt.X('funded_amount', bin=alt.Bin(maxbins=50)), # Use funded_amount for distribution | |
y='count()', | |
).properties( | |
title='Distribution of Funded Amounts' | |
) | |
st.altair_chart(chart, use_container_width=True) | |
st.write("This chart shows the distribution of funded amounts for Kiva loans. The x-axis represents the funded amount, while the y-axis shows the count of loans that fall within each bin. As you can see most of the loans are low valued with most of them being in the range of 100 and 500") | |
# Page 3: Top Values by Selected Variable | |
elif page == "Top Values by Selected Variable": | |
st.subheader('Top Values by Selected Variable') | |
# Dropdown for plot type | |
plot_type = st.selectbox("Select Variable to Display", ['country', 'repayment_interval', 'sector']) | |
# Slider to select the number of top values to display | |
num_columns = st.slider( | |
"Select Number of Columns to Display on the Chart", | |
min_value=5, | |
max_value=50, | |
value=10, # default value | |
step=1 | |
) | |
# Select the top values based on the selected variable and number of columns | |
if plot_type == 'country': | |
top_values = df_kiva_loans_cleaned.groupby('country')['funded_amount'].agg(['sum', 'count']).nlargest(num_columns, 'sum').reset_index() | |
x_column = 'country' | |
count_column = 'count' | |
description = f"This chart displays the top {num_columns} countries by total funded amount. The blue bars represent the total funded amount, while the red line indicates the count of loans. In general Phillipines is the country with the most loans followed by Kenya and El Salvador." | |
elif plot_type == 'repayment_interval': | |
top_values = df_kiva_loans_cleaned.groupby('repayment_interval')['funded_amount'].agg(['sum', 'count']).nlargest(num_columns, 'sum').reset_index() | |
x_column = 'repayment_interval' | |
count_column = 'count' | |
description = f"This chart shows the top {num_columns} repayment intervals by total funded amount. The blue bars represent the total funded amount, while the red line indicates the count of loans. Most of the loans are funded with a monthly repayment interval, where the bullet repayment is an unsusal choice" | |
else: # sector | |
top_values = df_kiva_loans_cleaned.groupby('sector')['funded_amount'].agg(['sum', 'count']).nlargest(num_columns, 'sum').reset_index() | |
x_column = 'sector' | |
count_column = 'count' | |
description = f"This chart illustrates the top {num_columns} sectors by total funded amount. The blue bars represent the total funded amount, while the red line indicates the count of loans. Most loans are funded to the Agriculture Sector with Food and Retail completing the first three. Looks like that if the sector of the business is close to Primary production or its Basic Necessities(food) " | |
# Display description | |
st.write(description) | |
# Create a dual-axis bar plot using Matplotlib | |
fig, ax1 = plt.subplots(figsize=(12, 9)) | |
plt.xticks(rotation=90) | |
# Bar plot for funded_amount | |
color = 'tab:blue' | |
ax1.set_xlabel(x_column.replace("_", " ").title()) | |
ax1.set_ylabel('Funded Amount', color=color) | |
ax1.bar(top_values[x_column], top_values['sum'], color=color, alpha=0.6, label='Funded Amount') | |
ax1.tick_params(axis='y', labelcolor=color) | |
# Create a second y-axis for count | |
ax2 = ax1.twinx() | |
color = 'tab:red' | |
ax2.set_ylabel('Count', color=color) | |
ax2.plot(top_values[x_column], top_values[count_column], color=color, marker='o', linestyle='-', linewidth=2, label='Count') | |
ax2.tick_params(axis='y', labelcolor=color) | |
# Add titles and labels | |
plt.title(f'Top {num_columns} by {plot_type.replace("_", " ").title()}') | |
fig.tight_layout() | |
st.pyplot(fig) | |
# Boxplot after the dual-axis plot | |
st.subheader('Funded Amount vs. Selected Variable') | |
# Filter the data based on the selected variable and number of top values | |
if plot_type == 'sector': | |
top_values_boxplot = df_kiva_loans_cleaned.groupby('sector')['funded_amount'].agg('sum').nlargest(num_columns).index | |
filtered_df_boxplot = df_kiva_loans_cleaned[df_kiva_loans_cleaned['sector'].isin(top_values_boxplot)] | |
elif plot_type == 'country': | |
top_values_boxplot = df_kiva_loans_cleaned.groupby('country')['funded_amount'].agg('sum').nlargest(num_columns).index | |
filtered_df_boxplot = df_kiva_loans_cleaned[df_kiva_loans_cleaned['country'].isin(top_values_boxplot)] | |
else: # repayment_interval | |
filtered_df_boxplot = df_kiva_loans_cleaned | |
# Create a boxplot | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
if plot_type != 'repayment_interval': | |
top_values_sorted = df_kiva_loans_cleaned.groupby(plot_type)['funded_amount'].agg('sum').nlargest(num_columns).index | |
sns.boxplot(x=plot_type, y='funded_amount', data=filtered_df_boxplot, order=top_values_sorted, ax=ax) | |
st.write(f"This boxplot shows the distribution of funded amounts for the top {num_columns} {plot_type.replace('_', ' ')}. It provides insights into the spread and outliers of funded amounts.") | |
else: | |
sns.boxplot(x=plot_type, y='funded_amount', data=filtered_df_boxplot, ax=ax) | |
st.write(f"This boxplot shows the distribution of funded amounts for the top {num_columns} {plot_type.replace('_', ' ')}. It provides insights into the spread and outliers of funded amounts.") | |
plt.title('Funded Amount by Selected Variable') | |
plt.xlabel(plot_type) | |
plt.ylabel('Funded Amount') | |
plt.xticks(rotation=90) | |
st.pyplot(fig) | |
# Remaining pages (Repayment Interval by Selected Variable, Country Comparison Deepdive, Sector Comparison Deepdive) | |
elif page == "Repayment Interval by Selected Variable": | |
st.subheader('Repayment Interval by Selected Variable') | |
# Dropdown for selecting variable for Seaborn countplot | |
plot_var = st.selectbox("Select Variable for Countplot", ['sector', 'country']) | |
# Slider to select the number of top values to display for Seaborn countplot | |
num_top_values = st.slider( | |
"Select Number of Top Values to Display", | |
min_value=5, | |
max_value=50, | |
value=10, # default value | |
step=1 | |
) | |
# Filter the data based on the selected variable and number of top values | |
if plot_var == 'sector': | |
top_values_plot = df_kiva_loans_cleaned.groupby('sector')['funded_amount'].agg('count').nlargest(num_top_values).index | |
filtered_df_plot = df_kiva_loans_cleaned[df_kiva_loans_cleaned['sector'].isin(top_values_plot)] | |
description = f"This countplot shows the distribution of repayment intervals for the top {num_top_values} sectors based on the number of loans. In terms of sectors Agriculture got the most monthly repayment loans followed by food. Also a lot of irregulars were in the Food, Retail and Agriculture sectors, which again confirms that loans for first necessities are given more easily. " | |
elif plot_var == 'country': | |
top_values_plot = df_kiva_loans_cleaned.groupby('country')['funded_amount'].agg('count').nlargest(num_top_values).index | |
filtered_df_plot = df_kiva_loans_cleaned[df_kiva_loans_cleaned['country'].isin(top_values_plot)] | |
description = f"This countplot illustrates the distribution of repayment intervals for the top {num_top_values} countries based on the number of loans. In terms of countries the Philippines had a great number of Irregular loans." | |
# Display description | |
st.write(description) | |
# Create a count plot | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
# Count the occurrences of repayment intervals for the filtered data | |
count_data = filtered_df_plot.groupby('repayment_interval')[plot_var].value_counts().unstack(fill_value=0) | |
# Calculate total counts for sorting | |
total_counts = count_data.sum(axis=1) | |
# Sort the repayment intervals based on the total count of loans in descending order | |
sorted_index = total_counts.sort_values(ascending=False).index | |
count_data = count_data.loc[sorted_index] | |
# Create a grouped bar plot | |
count_data.plot(kind='bar', ax=ax, position=0, width=0.8) | |
plt.title(f'Repayment Interval by {plot_var.replace("_", " ").title()}') | |
plt.xlabel('Repayment Interval') | |
plt.ylabel('Count of Loans') | |
plt.xticks(rotation=45) | |
plt.legend(title=plot_var.replace("_", " ").title(), bbox_to_anchor=(1.05, 1), loc='upper left') | |
st.pyplot(fig) | |
# Page 5: Country Comparison Deepdive | |
elif page == "Country Comparison Deepdive": | |
st.subheader("Country Comparison Deepdive") | |
# Multi-select for countries | |
selected_countries = st.multiselect("Select Countries to Compare (Please select one or more)", options=df_kiva_loans_cleaned['country'].unique()) | |
# Option to choose between count or sum of funded amounts | |
aggregation_option = st.radio("Select Aggregation Type:", ("Count of Loans", "Summary of Funded Amount")) | |
if selected_countries: | |
# Filter the data based on selected countries | |
filtered_data = df_kiva_loans_cleaned[df_kiva_loans_cleaned['country'].isin(selected_countries)] | |
# Create a combined bar plot for sector summary | |
st.subheader("Total Funded Amounts by Sector for Selected Countries") | |
if aggregation_option == "Sum": | |
sector_summary = filtered_data.groupby(['country', 'sector']).agg( | |
total_funded_amount=('funded_amount', 'sum') | |
).reset_index() | |
st.write("This graph shows the total funded amount in each Sector for the selected Countries by the user.") | |
else: # Count | |
sector_summary = filtered_data.groupby(['country', 'sector']).agg( | |
total_funded_amount=('funded_amount', 'count') | |
).reset_index() | |
st.write("This graph shows the number of loans in each Sector for the selected Countries by the user.") | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
sns.barplot(x='sector', y='total_funded_amount', hue='country', data=sector_summary, ax=ax) | |
plt.title(f'Total Funded Amount by Sector for Selected Countries ({aggregation_option})') | |
plt.xlabel('Sector') | |
plt.ylabel('Total Funded Amount' if aggregation_option == "Sum" else 'Count of Loans') | |
plt.xticks(rotation=45) | |
st.pyplot(fig) | |
# Create a combined bar plot for repayment summary | |
st.subheader("Total Funded Amounts by Repayment Interval for Selected Countries") | |
if aggregation_option == "Summary of Funded Amount": | |
repayment_summary = filtered_data.groupby(['country', 'repayment_interval']).agg( | |
total_funded_amount=('funded_amount', 'sum') | |
).reset_index() | |
st.write("This graph shows the total funded amount in each Repayment interval for the selected Countries by the user.") | |
else: # Count | |
repayment_summary = filtered_data.groupby(['country', 'repayment_interval']).agg( | |
total_funded_amount=('funded_amount', 'count') | |
).reset_index() | |
st.write("This graph shows the number of loans in each Repayment interval for the selected Countries by the user.") | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
sns.barplot(x='repayment_interval', y='total_funded_amount', hue='country', data=repayment_summary, ax=ax) | |
plt.title(f'Total Funded Amount by Repayment Interval for Selected Countries ({aggregation_option})') | |
plt.xlabel('Repayment Interval') | |
plt.ylabel('Total Funded Amount' if aggregation_option == "Sum" else 'Count of Loans') | |
plt.xticks(rotation=45) | |
st.pyplot(fig) | |
else: | |
st.write("Please select one or more countries to compare from the dropdown above.") | |
# Page 6: Sector Comparison Deepdive | |
elif page == "Sector Comparison Deepdive": | |
st.subheader("Sector Comparison Deepdive") | |
# Multi-select for sectors | |
selected_sectors = st.multiselect("Select Sectors to Compare (Please select one or more)", options=df_kiva_loans_cleaned['sector'].unique()) | |
# Option to choose between count or sum of funded amounts | |
aggregation_option = st.radio("Select Aggregation Type:", ("Count of Loans", "Summary of Funded Amount")) | |
if selected_sectors: | |
# Filter the data based on selected sectors | |
filtered_data = df_kiva_loans_cleaned[df_kiva_loans_cleaned['sector'].isin(selected_sectors)] | |
# Create a combined bar plot for sector summary by country | |
st.subheader("Total Funded Amounts by Country for Selected Sectors") | |
if aggregation_option == "Summary of Funded Amount": | |
country_summary = filtered_data.groupby(['country', 'sector']).agg( | |
total_funded_amount=('funded_amount', 'sum') | |
).reset_index() | |
st.write("This graph shows the total funded amount in each Country, for the selected Sectors by the user.") | |
else: # Count | |
country_summary = filtered_data.groupby(['country', 'sector']).agg( | |
total_funded_amount=('funded_amount', 'count') | |
).reset_index() | |
st.write("This graph shows the number of loans in each Country, for the selected Sectors by the user.") | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
sns.barplot(x='country', y='total_funded_amount', hue='sector', data=country_summary, ax=ax) | |
plt.title(f'Total Funded Amount by Country for Selected Sectors ({aggregation_option})') | |
plt.xlabel('Country') | |
plt.ylabel('Total Funded Amount' if aggregation_option == "Sum" else 'Count of Loans') | |
plt.legend(title='Sector', bbox_to_anchor=(1.05, 1), loc='upper left') | |
plt.xticks(rotation=90) | |
st.pyplot(fig) | |
# Create a combined bar plot for repayment summary | |
st.subheader("Total Funded Amounts by Repayment Interval for Selected Sectors") | |
if aggregation_option == "Sum": | |
repayment_summary = filtered_data.groupby(['repayment_interval', 'sector']).agg( | |
total_funded_amount=('funded_amount', 'sum') | |
).reset_index() | |
st.write("This graph shows the funded amount in each Repayment interval for the selected Sectors by the user.") | |
else: # Count | |
repayment_summary = filtered_data.groupby(['repayment_interval', 'sector']).agg( | |
total_funded_amount=('funded_amount', 'count') | |
).reset_index() | |
st.write("This graph shows the number of loans in each Repayment interval for the selected Sectors by the user.") | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
sns.barplot(x='repayment_interval', y='total_funded_amount', hue='sector', data=repayment_summary, ax=ax) | |
plt.title(f'Total Funded Amount by Repayment Interval for Selected Sectors ({aggregation_option})') | |
plt.xlabel('Repayment Interval') | |
plt.ylabel('Total Funded Amount' if aggregation_option == "Sum" else 'Count of Loans') | |
plt.legend(title='Sector', bbox_to_anchor=(1.05, 1), loc='upper left') | |
plt.xticks(rotation=90) | |
st.pyplot(fig) | |
else: | |
st.write("Please select one or more countries to compare from the dropdown above.") | |
# Page 7: KMeans Clustering & Recommendations | |
elif page == "KMeans Clustering & Recommendations": | |
st.subheader("KMeans Clustering & Recommendations") | |
# User input to choose the number of sample rows | |
sample_size = st.slider("Select the number of sample rows for clustering:", min_value=1000, max_value=100000, value=20000, step=1000) | |
# Sample the selected number of rows from the DataFrame | |
df_sample = df_kiva_loans_cleaned.sample(n=sample_size, random_state=42).copy() | |
# Keeping only the relevant columns and storing original indices | |
df_original = df_sample[['country','funded_amount', 'sector','repayment_interval']].copy() | |
df_original['original_index'] = df_sample.index # Keep track of original indices | |
# Label Encoding for categorical variables and adding encoded columns with "_id" suffix | |
label_encoders = {} | |
for column in df_original.select_dtypes(include=['object']).columns: | |
le = LabelEncoder() | |
df_original[column + '_id'] = le.fit_transform(df_original[column]) | |
label_encoders[column] = le | |
# Standardizing the data using the encoded columns | |
encoded_columns = [col + '_id' for col in df_original.select_dtypes(include=['object']).columns] | |
scaler = StandardScaler() | |
df_scaled = scaler.fit_transform(df_original[encoded_columns + ['funded_amount']]) | |
# Applying PCA | |
pca = PCA(n_components=2) # Reduce to 2 dimensions for visualization | |
df_pca = pca.fit_transform(df_scaled) | |
# Elbow Method to find the optimal number of clusters | |
inertia = [] | |
for n in range(1, 11): | |
kmeans = KMeans(n_clusters=n, random_state=42) | |
kmeans.fit(df_pca) | |
inertia.append(kmeans.inertia_) | |
# Plotting the Elbow Method | |
plt.figure(figsize=(8, 6)) | |
plt.plot(range(1, 11), inertia, marker='o', linestyle='--') | |
plt.title('Elbow Method for Optimal Number of Clusters') | |
plt.xlabel('Number of Clusters') | |
plt.ylabel('Inertia') | |
st.pyplot(plt.gcf()) | |
# User input to choose the optimal number of clusters | |
optimal_clusters = st.slider("Select the number of optimal clusters:", min_value=1, max_value=10, value=4, step=1) | |
# Apply KMeans with optimal clusters | |
kmeans = KMeans(n_clusters=optimal_clusters, random_state=42) | |
df_original['cluster'] = kmeans.fit_predict(df_pca) | |
# Visualize the clustering results at different iterations | |
max_iters = [1, 2, 5, 6, 8, 10] # Different iterations you want to visualize | |
# Increase the figure size for better visibility | |
plt.figure(figsize=(15, 55)) # Adjusted the figsize to make plots larger | |
for i, max_iter in enumerate(max_iters, start=1): | |
kmeans = KMeans(n_clusters=optimal_clusters, random_state=42, max_iter=max_iter) | |
df_original['cluster'] = kmeans.fit_predict(df_pca) | |
# Plotting the clusters | |
plt.subplot(6, 1, i) # Changed the layout to 3 rows x 2 columns for larger plots | |
sns.scatterplot(x=df_pca[:, 0], y=df_pca[:, 1], hue=df_original['cluster'], palette='viridis', s=100) | |
# Plotting the centroids | |
centroids = kmeans.cluster_centers_ | |
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=300, marker='X', label='Centroids') # Increased centroid size | |
plt.title(f'K-means Clustering - Iteration {max_iter}', fontsize=16) | |
plt.xlabel('Principal Component 1', fontsize=14) | |
plt.ylabel('Principal Component 2', fontsize=14) | |
plt.xticks(fontsize=12) | |
plt.yticks(fontsize=12) | |
if i == 1: | |
plt.legend() | |
plt.tight_layout() | |
st.pyplot(plt.gcf()) | |
# New Input: Select a cluster and display top 10 data points | |
st.subheader("Explore a Cluster") | |
selected_cluster = st.selectbox("Select a Cluster", options=sorted(df_original['cluster'].unique())) | |
# Filter data based on selected cluster | |
cluster_data = df_original[df_original['cluster'] == selected_cluster] | |
st.write(f"Top 10 items in Cluster {selected_cluster}:") | |
st.write(cluster_data.head(10)) | |
# Dynamic input for the new data point | |
st.subheader("Input New Data Point for Recommendations") | |
# Allow the user to select the country, sector, and repayment interval | |
country = st.selectbox("Select Country", options=df_kiva_loans_cleaned['country'].unique()) | |
sector = st.selectbox("Select Sector", options=df_kiva_loans_cleaned['sector'].unique()) | |
repayment_interval = st.selectbox("Select Repayment Interval", options=df_kiva_loans_cleaned['repayment_interval'].unique()) | |
# Allow the user to select the funded amount using a slider | |
funded_amount = st.slider("Select Funded Amount", min_value=int(df_kiva_loans_cleaned['funded_amount'].min()), max_value=int(df_kiva_loans_cleaned['funded_amount'].max()), value=1500) | |
new_data = { | |
'country': country, | |
'funded_amount': funded_amount, | |
'sector': sector, | |
'repayment_interval': repayment_interval | |
} | |
# Convert new data to DataFrame | |
new_data_df = pd.DataFrame([new_data]) | |
# Encode the new data point and add encoded columns with "_id" suffix | |
for column in new_data_df.select_dtypes(include=['object']).columns: | |
new_data_df[column + '_id'] = label_encoders[column].transform(new_data_df[column]) | |
# Standardize the new data using the encoded columns | |
new_data_scaled = scaler.transform(new_data_df[[col + '_id' for col in new_data_df.select_dtypes(include=['object']).columns] + ['funded_amount']]) | |
# Apply PCA to the new data | |
new_data_pca = pca.transform(new_data_scaled) | |
# Predict the cluster for the new data point | |
new_cluster = kmeans.predict(new_data_pca)[0] | |
st.subheader("Top 5 Similar Items to the Input") | |
st.write(f"The new data point belongs to cluster: {new_cluster}") | |
# Get all data points in the same cluster | |
cluster_data = df_original[df_original['cluster'] == new_cluster] | |
# Apply the same PCA transformation to the scaled data of the entire cluster | |
cluster_data_pca = pca.transform(scaler.transform(cluster_data[encoded_columns + ['funded_amount']])) | |
# Calculate the Euclidean distance between the new data point and all points in the same cluster | |
distances = cdist(new_data_pca, cluster_data_pca, 'euclidean')[0] | |
# Add distances to the cluster data DataFrame | |
cluster_data = cluster_data.copy() | |
cluster_data['distance'] = distances | |
# Sort by distance and select the top 5 closest items | |
top_5_recommendations = cluster_data.sort_values('distance').head(5) | |
# Retrieve the original rows from the original DataFrame before encoding | |
recommended_indices = top_5_recommendations['original_index'] | |
recommendations = df_kiva_loans_cleaned.loc[recommended_indices] | |
# Display the original rows as the top 5 recommendations | |
st.write(recommendations) | |
# Page 8: Hierarchical Clustering & Dendrogram | |
elif page == "Hierarchical Clustering & Dendrogram": | |
st.subheader("Hierarchical Clustering & Dendrogram") | |
# User input to choose the number of sample rows | |
sample_size = st.slider("Select the number of sample rows for clustering:", min_value=100, max_value=5000, value=150, step=50) | |
# User input to choose the number of clusters | |
n_clusters = st.slider("Select the number of clusters:", min_value=2, max_value=10, value=4, step=1) | |
# Sample the selected number of rows from the DataFrame | |
df_sample = df_kiva_loans_cleaned.sample(n=sample_size, random_state=42).copy() | |
# Keeping only the relevant columns and storing original indices | |
df_original = df_sample[['country','funded_amount', 'sector','repayment_interval']].copy() | |
df_original['original_index'] = df_sample.index # Keep track of original indices | |
# Label Encoding for categorical variables and adding encoded columns with "_id" suffix | |
label_encoders = {} | |
for column in df_original.select_dtypes(include=['object']).columns: | |
le = LabelEncoder() | |
df_original[column + '_id'] = le.fit_transform(df_original[column]) | |
label_encoders[column] = le | |
# Standardizing the data using the encoded columns | |
encoded_columns = [col + '_id' for col in df_original.select_dtypes(include=['object']).columns] | |
scaler = StandardScaler() | |
df_scaled = scaler.fit_transform(df_original[encoded_columns + ['funded_amount']]) | |
# Applying PCA | |
pca = PCA(n_components=2) # Reduce to 2 dimensions for visualization | |
df_pca = pca.fit_transform(df_scaled) | |
# Perform Agglomerative Clustering with dynamic n_clusters | |
agg_clustering = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward') | |
df_original['cluster'] = agg_clustering.fit_predict(df_pca) | |
# Plot the resulting clusters | |
plt.figure(figsize=(10, 7)) | |
sns.scatterplot(x=df_pca[:, 0], y=df_pca[:, 1], hue=df_original['cluster'], palette='viridis', s=50) | |
plt.title(f'Agglomerative Clustering (Hierarchical) Results - {n_clusters} Clusters') | |
plt.xlabel('Principal Component 1') | |
plt.ylabel('Principal Component 2') | |
st.pyplot(plt.gcf()) | |
# Dendrogram Visualization | |
linked = linkage(df_pca, method='ward') | |
plt.figure(figsize=(10, 7)) | |
dendrogram(linked, | |
orientation='top', | |
distance_sort='descending', | |
show_leaf_counts=True) | |
plt.title('Hierarchical Clustering Dendrogram') | |
st.pyplot(plt.gcf()) | |