Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- app.py +129 -0
- kiva_loans.csv +3 -0
- model_xgb.joblib +3 -0
- ohe.joblib +3 -0
- requirements.txt +9 -0
- scaler.joblib +3 -0
- shap_force_plot_class_0.html +0 -0
- shap_force_plot_class_1.html +0 -0
- shap_force_plot_class_2.html +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
kiva_loans.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
import shap
|
6 |
+
import xgboost as xgb
|
7 |
+
|
8 |
+
# Load the saved model and preprocessing objects
|
9 |
+
model_xgb = joblib.load('model_xgb.joblib')
|
10 |
+
scaler = joblib.load('scaler.joblib')
|
11 |
+
ohe = joblib.load('ohe.joblib')
|
12 |
+
|
13 |
+
# Extract the unique values for 'country' and 'sector' from the OneHotEncoder (ohe) object
|
14 |
+
unique_countries = ohe.categories_[0] # Assuming 'country' is the first categorical feature
|
15 |
+
unique_sectors = ohe.categories_[1] # Assuming 'sector' is the second categorical feature
|
16 |
+
|
17 |
+
# Define a mapping of encoded values to repayment interval labels
|
18 |
+
repayment_interval_mapping = {0: 'π
Bullet Repayment Interval', 1: 'πͺ Irregular Repayment Interval', 2: 'π
Monthly Repayment Interval'}
|
19 |
+
|
20 |
+
# Title with emojis and colors
|
21 |
+
st.markdown("<h1 style='text-align: center; color: blue;'>π Loan Repayment Interval Prediction π</h1>", unsafe_allow_html=True)
|
22 |
+
|
23 |
+
# Input Features Section with emojis and description
|
24 |
+
st.write("## π― Input Features")
|
25 |
+
st.markdown("Here you can choose the variables to predict the repayment interval based on historical data. Please provide the following details:")
|
26 |
+
|
27 |
+
# User input fields using unique country and sector values from the OneHotEncoder object
|
28 |
+
country = st.selectbox('π Country', unique_countries)
|
29 |
+
sector = st.selectbox('π’ Sector', unique_sectors)
|
30 |
+
funded_amount = st.number_input('π° Funded Amount', min_value=0, max_value=10000, value=1000, step=50)
|
31 |
+
lender_count = st.number_input('π₯ Lender Count', min_value=1, max_value=100, value=2, step=1)
|
32 |
+
|
33 |
+
# Create a sample observation from the user input
|
34 |
+
sample_listing = pd.DataFrame({
|
35 |
+
'country': [country],
|
36 |
+
'sector': [sector],
|
37 |
+
'funded_amount': [funded_amount],
|
38 |
+
'lender_count': [lender_count],
|
39 |
+
})
|
40 |
+
|
41 |
+
# Separate categorical and numerical features
|
42 |
+
cat_features = ['country', 'sector']
|
43 |
+
num_features = ['funded_amount', 'lender_count']
|
44 |
+
|
45 |
+
# Get the feature names from the OneHotEncoder
|
46 |
+
ohe_feature_names = ohe.get_feature_names_out(cat_features)
|
47 |
+
|
48 |
+
# Combine numerical feature names with encoded categorical feature names
|
49 |
+
feature_names = np.concatenate([num_features, ohe_feature_names])
|
50 |
+
|
51 |
+
# One-hot encode categorical features
|
52 |
+
X_cat = pd.DataFrame(ohe.transform(sample_listing[cat_features]), columns=ohe_feature_names)
|
53 |
+
|
54 |
+
# Scale numerical features
|
55 |
+
X_num = pd.DataFrame(scaler.transform(sample_listing[num_features]), columns=num_features)
|
56 |
+
|
57 |
+
# Combine processed features
|
58 |
+
X_processed = pd.concat([X_num, X_cat], axis=1)
|
59 |
+
|
60 |
+
# Make a prediction (returns the encoded value)
|
61 |
+
predicted_encoded_repayment_interval = model_xgb.predict(X_processed)[0]
|
62 |
+
|
63 |
+
# Map the encoded value back to the actual repayment interval label
|
64 |
+
predicted_repayment_interval = repayment_interval_mapping.get(int(predicted_encoded_repayment_interval), "Unknown")
|
65 |
+
|
66 |
+
# Display the actual repayment interval label with more style
|
67 |
+
st.title("β
Predicted Repayment Interval:")
|
68 |
+
st.markdown(f"<h2 style='color:green;'>{predicted_repayment_interval}</h2>", unsafe_allow_html=True)
|
69 |
+
|
70 |
+
# Explanation for SHAP force plots
|
71 |
+
st.write("## π SHAP Explanation")
|
72 |
+
st.markdown("The following SHAP plots explain the model's decision for each repayment interval type. These visualizations help you understand the key features that influenced the model's prediction.")
|
73 |
+
|
74 |
+
# SHAP explanations
|
75 |
+
explainer = shap.TreeExplainer(model_xgb)
|
76 |
+
shap_values = explainer.shap_values(X_processed)
|
77 |
+
|
78 |
+
# Function to add background color to SHAP plots
|
79 |
+
def add_background(html_content):
|
80 |
+
white_background_style = "<style>body { background-color: white; }</style>"
|
81 |
+
return white_background_style + html_content
|
82 |
+
|
83 |
+
# Generate and save SHAP force plot for Class 0 (Bullet)
|
84 |
+
st.write("### π
SHAP Force Plot for Class 0: Bullet Repayment Interval")
|
85 |
+
st.markdown("This plot explains the factors influencing the Bullet repayment interval prediction. Bullet repayment means paying off the loan in one lump sum at the end of the loan period.")
|
86 |
+
shap_html_path_0 = "shap_force_plot_class_0.html"
|
87 |
+
shap.save_html(shap_html_path_0, shap.force_plot(
|
88 |
+
explainer.expected_value[0],
|
89 |
+
shap_values[0][:, 0],
|
90 |
+
X_processed.iloc[0, :].values,
|
91 |
+
feature_names,
|
92 |
+
show=False,
|
93 |
+
matplotlib=False
|
94 |
+
))
|
95 |
+
with open(shap_html_path_0, 'r', encoding='utf-8') as f:
|
96 |
+
shap_html_0 = f.read()
|
97 |
+
st.components.v1.html(add_background(shap_html_0), height=130)
|
98 |
+
|
99 |
+
# Generate and save SHAP force plot for Class 1 (Irregular)
|
100 |
+
st.write("### πͺ SHAP Force Plot for Class 1: Irregular Repayment Interval")
|
101 |
+
st.markdown("This plot explains the factors influencing the Irregular repayment interval prediction. Irregular repayment means paying off the loan at irregular intervals based on specific conditions.")
|
102 |
+
shap_html_path_1 = "shap_force_plot_class_1.html"
|
103 |
+
shap.save_html(shap_html_path_1, shap.force_plot(
|
104 |
+
explainer.expected_value[1],
|
105 |
+
shap_values[0][:, 1],
|
106 |
+
X_processed.iloc[0, :].values,
|
107 |
+
feature_names,
|
108 |
+
show=False,
|
109 |
+
matplotlib=False
|
110 |
+
))
|
111 |
+
with open(shap_html_path_1, 'r', encoding='utf-8') as f:
|
112 |
+
shap_html_1 = f.read()
|
113 |
+
st.components.v1.html(add_background(shap_html_1), height=130)
|
114 |
+
|
115 |
+
# Generate and save SHAP force plot for Class 2 (Monthly)
|
116 |
+
st.write("### π
SHAP Force Plot for Class 2: Monthly Repayment Interval")
|
117 |
+
st.markdown("This plot explains the factors influencing the Monthly repayment interval prediction. Monthly repayment means paying off the loan in equal monthly installments.")
|
118 |
+
shap_html_path_2 = "shap_force_plot_class_2.html"
|
119 |
+
shap.save_html(shap_html_path_2, shap.force_plot(
|
120 |
+
explainer.expected_value[2],
|
121 |
+
shap_values[0][:, 2],
|
122 |
+
X_processed.iloc[0, :].values,
|
123 |
+
feature_names,
|
124 |
+
show=False,
|
125 |
+
matplotlib=False
|
126 |
+
))
|
127 |
+
with open(shap_html_path_2, 'r', encoding='utf-8') as f:
|
128 |
+
shap_html_2 = f.read()
|
129 |
+
st.components.v1.html(add_background(shap_html_2), height=130)
|
kiva_loans.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b20efc20de600b27608d69fe07e728b00a075c3db29849e146b717098f778d92
|
3 |
+
size 195852823
|
model_xgb.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98dd28b386001fc78e8261ec56685bd758c88b9ec0c5bedb73554c5b3953cf45
|
3 |
+
size 1648037
|
ohe.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a42f3b58afdd17d47b9a67203087a2619a51c65ad916d9b44eb172c078c0a6a
|
3 |
+
size 2809
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
streamlit
|
3 |
+
pandas
|
4 |
+
numpy
|
5 |
+
xgboost
|
6 |
+
scikit-learn
|
7 |
+
shap
|
8 |
+
matplotlib
|
9 |
+
joblib
|
scaler.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82b8e1f41898b2d08758feeed3e15d37e15d577a0f5a701d931a611c39774546
|
3 |
+
size 999
|
shap_force_plot_class_0.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
shap_force_plot_class_1.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
shap_force_plot_class_2.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|