Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system("pip install gfpgan")
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import cv2
|
7 |
+
import glob
|
8 |
+
import numpy as np
|
9 |
+
from basicsr.utils import imwrite
|
10 |
+
from gfpgan import GFPGANer
|
11 |
+
|
12 |
+
bg_upsampler = None
|
13 |
+
|
14 |
+
# set up GFPGAN restorer
|
15 |
+
restorer = GFPGANer(
|
16 |
+
model_path='GFPGANCleanv1-NoCE-C2.pth',
|
17 |
+
upscale=2,
|
18 |
+
arch='clean',
|
19 |
+
channel_multiplier=2,
|
20 |
+
bg_upsampler=bg_upsampler)
|
21 |
+
|
22 |
+
|
23 |
+
def inference(img):
|
24 |
+
input_img = cv2.imread(img, cv2.IMREAD_COLOR)
|
25 |
+
cropped_faces, restored_faces, restored_img = restorer.enhance(
|
26 |
+
input_img, has_aligned=False, only_center_face=False, paste_back=True)
|
27 |
+
|
28 |
+
return Image.fromarray(restored_faces[0][:, :, ::-1])
|
29 |
+
|
30 |
+
|
31 |
+
title = "GFP-GAN FACE ENHANCE MODEL"
|
32 |
+
gr.Interface(
|
33 |
+
inference,
|
34 |
+
[gr.inputs.Image(type="filepath", label="Input")],
|
35 |
+
gr.outputs.Image(type="pil", label="Output"),
|
36 |
+
title=title
|
37 |
+
).launch(enable_queue=True)
|