File size: 7,157 Bytes
8e542dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import cv2
import os
import os.path as osp
import numpy as np
from PIL import Image
import torch
from torch.hub import download_url_to_file, get_dir
from urllib.parse import urlparse
# from basicsr.utils.download_util import download_file_from_google_drive

ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))


def download_pretrained_models(file_ids, save_path_root):
    import gdown
    
    os.makedirs(save_path_root, exist_ok=True)

    for file_name, file_id in file_ids.items():
        file_url = 'https://drive.google.com/uc?id='+file_id
        save_path = osp.abspath(osp.join(save_path_root, file_name))
        if osp.exists(save_path):
            user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n')
            if user_response.lower() == 'y':
                print(f'Covering {file_name} to {save_path}')
                gdown.download(file_url, save_path, quiet=False)
                # download_file_from_google_drive(file_id, save_path)
            elif user_response.lower() == 'n':
                print(f'Skipping {file_name}')
            else:
                raise ValueError('Wrong input. Only accepts Y/N.')
        else:
            print(f'Downloading {file_name} to {save_path}')
            gdown.download(file_url, save_path, quiet=False)
            # download_file_from_google_drive(file_id, save_path)


def imwrite(img, file_path, params=None, auto_mkdir=True):
    """Write image to file.

    Args:
        img (ndarray): Image array to be written.
        file_path (str): Image file path.
        params (None or list): Same as opencv's :func:`imwrite` interface.
        auto_mkdir (bool): If the parent folder of `file_path` does not exist,
            whether to create it automatically.

    Returns:
        bool: Successful or not.
    """
    if auto_mkdir:
        dir_name = os.path.abspath(os.path.dirname(file_path))
        os.makedirs(dir_name, exist_ok=True)
    return cv2.imwrite(file_path, img, params)


def img2tensor(imgs, bgr2rgb=True, float32=True):
    """Numpy array to tensor.

    Args:
        imgs (list[ndarray] | ndarray): Input images.
        bgr2rgb (bool): Whether to change bgr to rgb.
        float32 (bool): Whether to change to float32.

    Returns:
        list[tensor] | tensor: Tensor images. If returned results only have
            one element, just return tensor.
    """

    def _totensor(img, bgr2rgb, float32):
        if img.shape[2] == 3 and bgr2rgb:
            if img.dtype == 'float64':
                img = img.astype('float32')
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = torch.from_numpy(img.transpose(2, 0, 1))
        if float32:
            img = img.float()
        return img

    if isinstance(imgs, list):
        return [_totensor(img, bgr2rgb, float32) for img in imgs]
    else:
        return _totensor(imgs, bgr2rgb, float32)


def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
    """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
    """
    if model_dir is None:
        hub_dir = get_dir()
        model_dir = os.path.join(hub_dir, 'checkpoints')

    os.makedirs(os.path.join(ROOT_DIR, model_dir), exist_ok=True)

    parts = urlparse(url)
    filename = os.path.basename(parts.path)
    if file_name is not None:
        filename = file_name
    cached_file = os.path.abspath(os.path.join(ROOT_DIR, model_dir, filename))
    if not os.path.exists(cached_file):
        print(f'Downloading: "{url}" to {cached_file}\n')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
    return cached_file


def scandir(dir_path, suffix=None, recursive=False, full_path=False):
    """Scan a directory to find the interested files.
    Args:
        dir_path (str): Path of the directory.
        suffix (str | tuple(str), optional): File suffix that we are
            interested in. Default: None.
        recursive (bool, optional): If set to True, recursively scan the
            directory. Default: False.
        full_path (bool, optional): If set to True, include the dir_path.
            Default: False.
    Returns:
        A generator for all the interested files with relative paths.
    """

    if (suffix is not None) and not isinstance(suffix, (str, tuple)):
        raise TypeError('"suffix" must be a string or tuple of strings')

    root = dir_path

    def _scandir(dir_path, suffix, recursive):
        for entry in os.scandir(dir_path):
            if not entry.name.startswith('.') and entry.is_file():
                if full_path:
                    return_path = entry.path
                else:
                    return_path = osp.relpath(entry.path, root)

                if suffix is None:
                    yield return_path
                elif return_path.endswith(suffix):
                    yield return_path
            else:
                if recursive:
                    yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
                else:
                    continue

    return _scandir(dir_path, suffix=suffix, recursive=recursive)


def is_gray(img, threshold=10):
    img = Image.fromarray(img)
    if len(img.getbands()) == 1:
        return True
    img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16)
    img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16)
    img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16)
    diff1 = (img1 - img2).var()
    diff2 = (img2 - img3).var()
    diff3 = (img3 - img1).var()
    diff_sum = (diff1 + diff2 + diff3) / 3.0
    if diff_sum <= threshold:
        return True
    else:
        return False

def rgb2gray(img, out_channel=3):
    r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
    if out_channel == 3:
        gray = gray[:,:,np.newaxis].repeat(3, axis=2)
    return gray

def bgr2gray(img, out_channel=3):
    b, g, r = img[:,:,0], img[:,:,1], img[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
    if out_channel == 3:
        gray = gray[:,:,np.newaxis].repeat(3, axis=2)
    return gray


def calc_mean_std(feat, eps=1e-5):
    """
    Args:
        feat (numpy): 3D [w h c]s
    """
    size = feat.shape
    assert len(size) == 3, 'The input feature should be 3D tensor.'
    c = size[2]
    feat_var = feat.reshape(-1, c).var(axis=0) + eps
    feat_std = np.sqrt(feat_var).reshape(1, 1, c)
    feat_mean = feat.reshape(-1, c).mean(axis=0).reshape(1, 1, c)
    return feat_mean, feat_std


def adain_npy(content_feat, style_feat):
    """Adaptive instance normalization for numpy.

    Args:
        content_feat (numpy): The input feature.
        style_feat (numpy): The reference feature.
    """
    size = content_feat.shape
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)
    normalized_feat = (content_feat - np.broadcast_to(content_mean, size)) / np.broadcast_to(content_std, size)
    return normalized_feat * np.broadcast_to(style_std, size) + np.broadcast_to(style_mean, size)