File size: 4,563 Bytes
8e542dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import cv2
import numpy as np

from basicsr.metrics.metric_util import reorder_image, to_y_channel
from basicsr.utils.registry import METRIC_REGISTRY


@METRIC_REGISTRY.register()
def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
    """Calculate PSNR (Peak Signal-to-Noise Ratio).

    Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

    Args:
        img1 (ndarray): Images with range [0, 255].
        img2 (ndarray): Images with range [0, 255].
        crop_border (int): Cropped pixels in each edge of an image. These
            pixels are not involved in the PSNR calculation.
        input_order (str): Whether the input order is 'HWC' or 'CHW'.
            Default: 'HWC'.
        test_y_channel (bool): Test on Y channel of YCbCr. Default: False.

    Returns:
        float: psnr result.
    """

    assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
    img1 = reorder_image(img1, input_order=input_order)
    img2 = reorder_image(img2, input_order=input_order)
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)

    if crop_border != 0:
        img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
        img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]

    if test_y_channel:
        img1 = to_y_channel(img1)
        img2 = to_y_channel(img2)

    mse = np.mean((img1 - img2)**2)
    if mse == 0:
        return float('inf')
    return 20. * np.log10(255. / np.sqrt(mse))


def _ssim(img1, img2):
    """Calculate SSIM (structural similarity) for one channel images.

    It is called by func:`calculate_ssim`.

    Args:
        img1 (ndarray): Images with range [0, 255] with order 'HWC'.
        img2 (ndarray): Images with range [0, 255] with order 'HWC'.

    Returns:
        float: ssim result.
    """

    C1 = (0.01 * 255)**2
    C2 = (0.03 * 255)**2

    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    kernel = cv2.getGaussianKernel(11, 1.5)
    window = np.outer(kernel, kernel.transpose())

    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
    mu1_sq = mu1**2
    mu2_sq = mu2**2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
    sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
    sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
    return ssim_map.mean()


@METRIC_REGISTRY.register()
def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
    """Calculate SSIM (structural similarity).

    Ref:
    Image quality assessment: From error visibility to structural similarity

    The results are the same as that of the official released MATLAB code in
    https://ece.uwaterloo.ca/~z70wang/research/ssim/.

    For three-channel images, SSIM is calculated for each channel and then
    averaged.

    Args:
        img1 (ndarray): Images with range [0, 255].
        img2 (ndarray): Images with range [0, 255].
        crop_border (int): Cropped pixels in each edge of an image. These
            pixels are not involved in the SSIM calculation.
        input_order (str): Whether the input order is 'HWC' or 'CHW'.
            Default: 'HWC'.
        test_y_channel (bool): Test on Y channel of YCbCr. Default: False.

    Returns:
        float: ssim result.
    """

    assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
    img1 = reorder_image(img1, input_order=input_order)
    img2 = reorder_image(img2, input_order=input_order)
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)

    if crop_border != 0:
        img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
        img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]

    if test_y_channel:
        img1 = to_y_channel(img1)
        img2 = to_y_channel(img2)

    ssims = []
    for i in range(img1.shape[2]):
        ssims.append(_ssim(img1[..., i], img2[..., i]))
    return np.array(ssims).mean()