Spaces:
Runtime error
Runtime error
File size: 14,922 Bytes
8e542dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import torch
from collections import OrderedDict
from os import path as osp
from tqdm import tqdm
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
import torch.nn.functional as F
from .sr_model import SRModel
@MODEL_REGISTRY.register()
class CodeFormerJointModel(SRModel):
def feed_data(self, data):
self.gt = data['gt'].to(self.device)
self.input = data['in'].to(self.device)
self.input_large_de = data['in_large_de'].to(self.device)
self.b = self.gt.shape[0]
if 'latent_gt' in data:
self.idx_gt = data['latent_gt'].to(self.device)
self.idx_gt = self.idx_gt.view(self.b, -1)
else:
self.idx_gt = None
def init_training_settings(self):
logger = get_root_logger()
train_opt = self.opt['train']
self.ema_decay = train_opt.get('ema_decay', 0)
if self.ema_decay > 0:
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
# define network net_g with Exponential Moving Average (EMA)
# net_g_ema is used only for testing on one GPU and saving
# There is no need to wrap with DistributedDataParallel
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g_ema.eval()
if self.opt['datasets']['train'].get('latent_gt_path', None) is not None:
self.generate_idx_gt = False
elif self.opt.get('network_vqgan', None) is not None:
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
self.hq_vqgan_fix.eval()
self.generate_idx_gt = True
for param in self.hq_vqgan_fix.parameters():
param.requires_grad = False
else:
raise NotImplementedError(f'Shoule have network_vqgan config or pre-calculated latent code.')
logger.info(f'Need to generate latent GT code: {self.generate_idx_gt}')
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
self.scale_adaptive_gan_weight = train_opt.get('scale_adaptive_gan_weight', 0.8)
# define network net_d
self.net_d = build_network(self.opt['network_d'])
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained models
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
self.net_g.train()
self.net_d.train()
# define losses
if train_opt.get('pixel_opt'):
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
else:
self.cri_pix = None
if train_opt.get('perceptual_opt'):
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
else:
self.cri_perceptual = None
if train_opt.get('gan_opt'):
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
self.fix_generator = train_opt.get('fix_generator', True)
logger.info(f'fix_generator: {self.fix_generator}')
self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
self.net_d_iters = train_opt.get('net_d_iters', 1)
self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max):
recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach()
return d_weight
def setup_optimizers(self):
train_opt = self.opt['train']
# optimizer g
optim_params_g = []
for k, v in self.net_g.named_parameters():
if v.requires_grad:
optim_params_g.append(v)
else:
logger = get_root_logger()
logger.warning(f'Params {k} will not be optimized.')
optim_type = train_opt['optim_g'].pop('type')
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
self.optimizers.append(self.optimizer_g)
# optimizer d
optim_type = train_opt['optim_d'].pop('type')
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
self.optimizers.append(self.optimizer_d)
def gray_resize_for_identity(self, out, size=128):
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
out_gray = out_gray.unsqueeze(1)
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
return out_gray
def optimize_parameters(self, current_iter):
logger = get_root_logger()
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
if self.generate_idx_gt:
x = self.hq_vqgan_fix.encoder(self.gt)
output, _, quant_stats = self.hq_vqgan_fix.quantize(x)
min_encoding_indices = quant_stats['min_encoding_indices']
self.idx_gt = min_encoding_indices.view(self.b, -1)
if current_iter <= 40000: # small degradation
small_per_n = 1
w = 1
elif current_iter <= 80000: # small degradation
small_per_n = 1
w = 1.3
elif current_iter <= 120000: # large degradation
small_per_n = 120000
w = 0
else: # mixed degradation
small_per_n = 15
w = 1.3
if current_iter % small_per_n == 0:
self.output, logits, lq_feat = self.net_g(self.input, w=w, detach_16=True)
large_de = False
else:
logits, lq_feat = self.net_g(self.input_large_de, code_only=True)
large_de = True
if self.hq_feat_loss:
# quant_feats
quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])
l_g_total = 0
loss_dict = OrderedDict()
if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter:
# hq_feat_loss
if not 'transformer' in self.opt['network_g']['fix_modules']:
if self.hq_feat_loss: # codebook loss
l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
l_g_total += l_feat_encoder
loss_dict['l_feat_encoder'] = l_feat_encoder
# cross_entropy_loss
if self.cross_entropy_loss:
# b(hw)n -> bn(hw)
cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
l_g_total += cross_entropy_loss
loss_dict['cross_entropy_loss'] = cross_entropy_loss
# pixel loss
if not large_de: # when large degradation don't need image-level loss
if self.cri_pix:
l_g_pix = self.cri_pix(self.output, self.gt)
l_g_total += l_g_pix
loss_dict['l_g_pix'] = l_g_pix
# perceptual loss
if self.cri_perceptual:
l_g_percep = self.cri_perceptual(self.output, self.gt)
l_g_total += l_g_percep
loss_dict['l_g_percep'] = l_g_percep
# gan loss
if current_iter > self.net_d_start_iter:
fake_g_pred = self.net_d(self.output)
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
recon_loss = l_g_pix + l_g_percep
if not self.fix_generator:
last_layer = self.net_g.module.generator.blocks[-1].weight
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
else:
largest_fuse_size = self.opt['network_g']['connect_list'][-1]
last_layer = self.net_g.module.fuse_convs_dict[largest_fuse_size].shift[-1].weight
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
d_weight *= self.scale_adaptive_gan_weight # 0.8
loss_dict['d_weight'] = d_weight
l_g_total += d_weight * l_g_gan
loss_dict['l_g_gan'] = d_weight * l_g_gan
l_g_total.backward()
self.optimizer_g.step()
if self.ema_decay > 0:
self.model_ema(decay=self.ema_decay)
# optimize net_d
if not large_de:
if current_iter > self.net_d_start_iter:
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
# real
real_d_pred = self.net_d(self.gt)
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
loss_dict['l_d_real'] = l_d_real
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
l_d_real.backward()
# fake
fake_d_pred = self.net_d(self.output.detach())
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
loss_dict['l_d_fake'] = l_d_fake
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
l_d_fake.backward()
self.optimizer_d.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
def test(self):
with torch.no_grad():
if hasattr(self, 'net_g_ema'):
self.net_g_ema.eval()
self.output, _, _ = self.net_g_ema(self.input, w=1)
else:
logger = get_root_logger()
logger.warning('Do not have self.net_g_ema, use self.net_g.')
self.net_g.eval()
self.output, _, _ = self.net_g(self.input, w=1)
self.net_g.train()
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
if self.opt['rank'] == 0:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
dataset_name = dataloader.dataset.opt['name']
with_metrics = self.opt['val'].get('metrics') is not None
if with_metrics:
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
pbar = tqdm(total=len(dataloader), unit='image')
for idx, val_data in enumerate(dataloader):
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
self.feed_data(val_data)
self.test()
visuals = self.get_current_visuals()
sr_img = tensor2img([visuals['result']])
if 'gt' in visuals:
gt_img = tensor2img([visuals['gt']])
del self.gt
# tentative for out of GPU memory
del self.lq
del self.output
torch.cuda.empty_cache()
if save_img:
if self.opt['is_train']:
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
f'{img_name}_{current_iter}.png')
else:
if self.opt['val']['suffix']:
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
f'{img_name}_{self.opt["val"]["suffix"]}.png')
else:
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
f'{img_name}_{self.opt["name"]}.png')
imwrite(sr_img, save_img_path)
if with_metrics:
# calculate metrics
for name, opt_ in self.opt['val']['metrics'].items():
metric_data = dict(img1=sr_img, img2=gt_img)
self.metric_results[name] += calculate_metric(metric_data, opt_)
pbar.update(1)
pbar.set_description(f'Test {img_name}')
pbar.close()
if with_metrics:
for metric in self.metric_results.keys():
self.metric_results[metric] /= (idx + 1)
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
log_str = f'Validation {dataset_name}\n'
for metric, value in self.metric_results.items():
log_str += f'\t # {metric}: {value:.4f}\n'
logger = get_root_logger()
logger.info(log_str)
if tb_logger:
for metric, value in self.metric_results.items():
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
def get_current_visuals(self):
out_dict = OrderedDict()
out_dict['gt'] = self.gt.detach().cpu()
out_dict['result'] = self.output.detach().cpu()
return out_dict
def save(self, epoch, current_iter):
if self.ema_decay > 0:
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
else:
self.save_network(self.net_g, 'net_g', current_iter)
self.save_network(self.net_d, 'net_d', current_iter)
self.save_training_state(epoch, current_iter)
|