File size: 8,109 Bytes
8e542dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import numpy as np
from numpy.linalg import inv, lstsq
from numpy.linalg import matrix_rank as rank
from numpy.linalg import norm


class MatlabCp2tormException(Exception):

    def __str__(self):
        return 'In File {}:{}'.format(__file__, super.__str__(self))


def tformfwd(trans, uv):
    """
    Function:
    ----------
        apply affine transform 'trans' to uv

    Parameters:
    ----------
        @trans: 3x3 np.array
            transform matrix
        @uv: Kx2 np.array
            each row is a pair of coordinates (x, y)

    Returns:
    ----------
        @xy: Kx2 np.array
            each row is a pair of transformed coordinates (x, y)
    """
    uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
    xy = np.dot(uv, trans)
    xy = xy[:, 0:-1]
    return xy


def tforminv(trans, uv):
    """
    Function:
    ----------
        apply the inverse of affine transform 'trans' to uv

    Parameters:
    ----------
        @trans: 3x3 np.array
            transform matrix
        @uv: Kx2 np.array
            each row is a pair of coordinates (x, y)

    Returns:
    ----------
        @xy: Kx2 np.array
            each row is a pair of inverse-transformed coordinates (x, y)
    """
    Tinv = inv(trans)
    xy = tformfwd(Tinv, uv)
    return xy


def findNonreflectiveSimilarity(uv, xy, options=None):
    options = {'K': 2}

    K = options['K']
    M = xy.shape[0]
    x = xy[:, 0].reshape((-1, 1))  # use reshape to keep a column vector
    y = xy[:, 1].reshape((-1, 1))  # use reshape to keep a column vector

    tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
    tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
    X = np.vstack((tmp1, tmp2))

    u = uv[:, 0].reshape((-1, 1))  # use reshape to keep a column vector
    v = uv[:, 1].reshape((-1, 1))  # use reshape to keep a column vector
    U = np.vstack((u, v))

    # We know that X * r = U
    if rank(X) >= 2 * K:
        r, _, _, _ = lstsq(X, U, rcond=-1)
        r = np.squeeze(r)
    else:
        raise Exception('cp2tform:twoUniquePointsReq')
    sc = r[0]
    ss = r[1]
    tx = r[2]
    ty = r[3]

    Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
    T = inv(Tinv)
    T[:, 2] = np.array([0, 0, 1])

    return T, Tinv


def findSimilarity(uv, xy, options=None):
    options = {'K': 2}

    #    uv = np.array(uv)
    #    xy = np.array(xy)

    # Solve for trans1
    trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)

    # Solve for trans2

    # manually reflect the xy data across the Y-axis
    xyR = xy
    xyR[:, 0] = -1 * xyR[:, 0]

    trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)

    # manually reflect the tform to undo the reflection done on xyR
    TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])

    trans2 = np.dot(trans2r, TreflectY)

    # Figure out if trans1 or trans2 is better
    xy1 = tformfwd(trans1, uv)
    norm1 = norm(xy1 - xy)

    xy2 = tformfwd(trans2, uv)
    norm2 = norm(xy2 - xy)

    if norm1 <= norm2:
        return trans1, trans1_inv
    else:
        trans2_inv = inv(trans2)
        return trans2, trans2_inv


def get_similarity_transform(src_pts, dst_pts, reflective=True):
    """
    Function:
    ----------
        Find Similarity Transform Matrix 'trans':
            u = src_pts[:, 0]
            v = src_pts[:, 1]
            x = dst_pts[:, 0]
            y = dst_pts[:, 1]
            [x, y, 1] = [u, v, 1] * trans

    Parameters:
    ----------
        @src_pts: Kx2 np.array
            source points, each row is a pair of coordinates (x, y)
        @dst_pts: Kx2 np.array
            destination points, each row is a pair of transformed
            coordinates (x, y)
        @reflective: True or False
            if True:
                use reflective similarity transform
            else:
                use non-reflective similarity transform

    Returns:
    ----------
       @trans: 3x3 np.array
            transform matrix from uv to xy
        trans_inv: 3x3 np.array
            inverse of trans, transform matrix from xy to uv
    """

    if reflective:
        trans, trans_inv = findSimilarity(src_pts, dst_pts)
    else:
        trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)

    return trans, trans_inv


def cvt_tform_mat_for_cv2(trans):
    """
    Function:
    ----------
        Convert Transform Matrix 'trans' into 'cv2_trans' which could be
        directly used by cv2.warpAffine():
            u = src_pts[:, 0]
            v = src_pts[:, 1]
            x = dst_pts[:, 0]
            y = dst_pts[:, 1]
            [x, y].T = cv_trans * [u, v, 1].T

    Parameters:
    ----------
        @trans: 3x3 np.array
            transform matrix from uv to xy

    Returns:
    ----------
        @cv2_trans: 2x3 np.array
            transform matrix from src_pts to dst_pts, could be directly used
            for cv2.warpAffine()
    """
    cv2_trans = trans[:, 0:2].T

    return cv2_trans


def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
    """
    Function:
    ----------
        Find Similarity Transform Matrix 'cv2_trans' which could be
        directly used by cv2.warpAffine():
            u = src_pts[:, 0]
            v = src_pts[:, 1]
            x = dst_pts[:, 0]
            y = dst_pts[:, 1]
            [x, y].T = cv_trans * [u, v, 1].T

    Parameters:
    ----------
        @src_pts: Kx2 np.array
            source points, each row is a pair of coordinates (x, y)
        @dst_pts: Kx2 np.array
            destination points, each row is a pair of transformed
            coordinates (x, y)
        reflective: True or False
            if True:
                use reflective similarity transform
            else:
                use non-reflective similarity transform

    Returns:
    ----------
        @cv2_trans: 2x3 np.array
            transform matrix from src_pts to dst_pts, could be directly used
            for cv2.warpAffine()
    """
    trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
    cv2_trans = cvt_tform_mat_for_cv2(trans)

    return cv2_trans


if __name__ == '__main__':
    """
    u = [0, 6, -2]
    v = [0, 3, 5]
    x = [-1, 0, 4]
    y = [-1, -10, 4]

    # In Matlab, run:
    #
    #   uv = [u'; v'];
    #   xy = [x'; y'];
    #   tform_sim=cp2tform(uv,xy,'similarity');
    #
    #   trans = tform_sim.tdata.T
    #   ans =
    #       -0.0764   -1.6190         0
    #        1.6190   -0.0764         0
    #       -3.2156    0.0290    1.0000
    #   trans_inv = tform_sim.tdata.Tinv
    #    ans =
    #
    #       -0.0291    0.6163         0
    #       -0.6163   -0.0291         0
    #       -0.0756    1.9826    1.0000
    #    xy_m=tformfwd(tform_sim, u,v)
    #
    #    xy_m =
    #
    #       -3.2156    0.0290
    #        1.1833   -9.9143
    #        5.0323    2.8853
    #    uv_m=tforminv(tform_sim, x,y)
    #
    #    uv_m =
    #
    #        0.5698    1.3953
    #        6.0872    2.2733
    #       -2.6570    4.3314
    """
    u = [0, 6, -2]
    v = [0, 3, 5]
    x = [-1, 0, 4]
    y = [-1, -10, 4]

    uv = np.array((u, v)).T
    xy = np.array((x, y)).T

    print('\n--->uv:')
    print(uv)
    print('\n--->xy:')
    print(xy)

    trans, trans_inv = get_similarity_transform(uv, xy)

    print('\n--->trans matrix:')
    print(trans)

    print('\n--->trans_inv matrix:')
    print(trans_inv)

    print('\n---> apply transform to uv')
    print('\nxy_m = uv_augmented * trans')
    uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
    xy_m = np.dot(uv_aug, trans)
    print(xy_m)

    print('\nxy_m = tformfwd(trans, uv)')
    xy_m = tformfwd(trans, uv)
    print(xy_m)

    print('\n---> apply inverse transform to xy')
    print('\nuv_m = xy_augmented * trans_inv')
    xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
    uv_m = np.dot(xy_aug, trans_inv)
    print(uv_m)

    print('\nuv_m = tformfwd(trans_inv, xy)')
    uv_m = tformfwd(trans_inv, xy)
    print(uv_m)

    uv_m = tforminv(trans, xy)
    print('\nuv_m = tforminv(trans, xy)')
    print(uv_m)