File size: 9,730 Bytes
8e542dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import math
from copy import deepcopy
from pathlib import Path

import torch
import yaml  # for torch hub
from torch import nn

from facelib.detection.yolov5face.models.common import (
    C3,
    NMS,
    SPP,
    AutoShape,
    Bottleneck,
    BottleneckCSP,
    Concat,
    Conv,
    DWConv,
    Focus,
    ShuffleV2Block,
    StemBlock,
)
from facelib.detection.yolov5face.models.experimental import CrossConv, MixConv2d
from facelib.detection.yolov5face.utils.autoanchor import check_anchor_order
from facelib.detection.yolov5face.utils.general import make_divisible
from facelib.detection.yolov5face.utils.torch_utils import copy_attr, fuse_conv_and_bn


class Detect(nn.Module):
    stride = None  # strides computed during build
    export = False  # onnx export

    def __init__(self, nc=80, anchors=(), ch=()):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5 + 10  # number of outputs per anchor

        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer("anchors", a)  # shape(nl,na,2)
        self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv

    def forward(self, x):
        z = []  # inference output
        if self.export:
            for i in range(self.nl):
                x[i] = self.m[i](x[i])
            return x
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i] = self._make_grid(nx, ny).to(x[i].device)

                y = torch.full_like(x[i], 0)
                y[..., [0, 1, 2, 3, 4, 15]] = x[i][..., [0, 1, 2, 3, 4, 15]].sigmoid()
                y[..., 5:15] = x[i][..., 5:15]

                y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]  # xy
                y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh

                y[..., 5:7] = (
                    y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
                )  # landmark x1 y1
                y[..., 7:9] = (
                    y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
                )  # landmark x2 y2
                y[..., 9:11] = (
                    y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
                )  # landmark x3 y3
                y[..., 11:13] = (
                    y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
                )  # landmark x4 y4
                y[..., 13:15] = (
                    y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
                )  # landmark x5 y5

                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    @staticmethod
    def _make_grid(nx=20, ny=20):
        # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing="ij") # for pytorch>=1.10
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()


class Model(nn.Module):
    def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None):  # model, input channels, number of classes
        super().__init__()
        self.yaml_file = Path(cfg).name
        with Path(cfg).open(encoding="utf8") as f:
            self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channels
        if nc and nc != self.yaml["nc"]:
            self.yaml["nc"] = nc  # override yaml value

        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml["nc"])]  # default names

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 128  # 2x min stride
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once

    def forward(self, x):
        return self.forward_once(x)  # single-scale inference, train

    def forward_once(self, x):
        y = []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers

            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output

        return x

    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def _print_biases(self):
        m = self.model[-1]  # Detect() module
        for mi in m.m:  # from
            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
            print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        print("Fusing layers... ")
        for m in self.model.modules():
            if isinstance(m, Conv) and hasattr(m, "bn"):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, "bn")  # remove batchnorm
                m.forward = m.fuseforward  # update forward
            elif type(m) is nn.Upsample:
                m.recompute_scale_factor = None  # torch 1.11.0 compatibility
        return self

    def nms(self, mode=True):  # add or remove NMS module
        present = isinstance(self.model[-1], NMS)  # last layer is NMS
        if mode and not present:
            print("Adding NMS... ")
            m = NMS()  # module
            m.f = -1  # from
            m.i = self.model[-1].i + 1  # index
            self.model.add_module(name=str(m.i), module=m)  # add
            self.eval()
        elif not mode and present:
            print("Removing NMS... ")
            self.model = self.model[:-1]  # remove
        return self

    def autoshape(self):  # add autoShape module
        print("Adding autoShape... ")
        m = AutoShape(self)  # wrap model
        copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=())  # copy attributes
        return m


def parse_model(d, ch):  # model_dict, input_channels(3)
    anchors, nc, gd, gw = d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"]
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except:
                pass

        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [
            Conv,
            Bottleneck,
            SPP,
            DWConv,
            MixConv2d,
            Focus,
            CrossConv,
            BottleneckCSP,
            C3,
            ShuffleV2Block,
            StemBlock,
        ]:
            c1, c2 = ch[f], args[0]

            c2 = make_divisible(c2 * gw, 8) if c2 != no else c2

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3]:
                args.insert(2, n)
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
        elif m is Detect:
            args.append([ch[x + 1] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace("__main__.", "")  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)