Tzktz's picture
Upload 174 files
8e542dc verified
raw
history blame
15.1 kB
import cv2
import math
import numpy as np
import torch
from os import path as osp
from PIL import Image, ImageDraw
from torch.nn import functional as F
from basicsr.data.transforms import mod_crop
from basicsr.utils import img2tensor, scandir
def read_img_seq(path, require_mod_crop=False, scale=1):
"""Read a sequence of images from a given folder path.
Args:
path (list[str] | str): List of image paths or image folder path.
require_mod_crop (bool): Require mod crop for each image.
Default: False.
scale (int): Scale factor for mod_crop. Default: 1.
Returns:
Tensor: size (t, c, h, w), RGB, [0, 1].
"""
if isinstance(path, list):
img_paths = path
else:
img_paths = sorted(list(scandir(path, full_path=True)))
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
if require_mod_crop:
imgs = [mod_crop(img, scale) for img in imgs]
imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
imgs = torch.stack(imgs, dim=0)
return imgs
def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
"""Generate an index list for reading `num_frames` frames from a sequence
of images.
Args:
crt_idx (int): Current center index.
max_frame_num (int): Max number of the sequence of images (from 1).
num_frames (int): Reading num_frames frames.
padding (str): Padding mode, one of
'replicate' | 'reflection' | 'reflection_circle' | 'circle'
Examples: current_idx = 0, num_frames = 5
The generated frame indices under different padding mode:
replicate: [0, 0, 0, 1, 2]
reflection: [2, 1, 0, 1, 2]
reflection_circle: [4, 3, 0, 1, 2]
circle: [3, 4, 0, 1, 2]
Returns:
list[int]: A list of indices.
"""
assert num_frames % 2 == 1, 'num_frames should be an odd number.'
assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
max_frame_num = max_frame_num - 1 # start from 0
num_pad = num_frames // 2
indices = []
for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
if i < 0:
if padding == 'replicate':
pad_idx = 0
elif padding == 'reflection':
pad_idx = -i
elif padding == 'reflection_circle':
pad_idx = crt_idx + num_pad - i
else:
pad_idx = num_frames + i
elif i > max_frame_num:
if padding == 'replicate':
pad_idx = max_frame_num
elif padding == 'reflection':
pad_idx = max_frame_num * 2 - i
elif padding == 'reflection_circle':
pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
else:
pad_idx = i - num_frames
else:
pad_idx = i
indices.append(pad_idx)
return indices
def paired_paths_from_lmdb(folders, keys):
"""Generate paired paths from lmdb files.
Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
lq.lmdb
├── data.mdb
├── lock.mdb
├── meta_info.txt
The data.mdb and lock.mdb are standard lmdb files and you can refer to
https://lmdb.readthedocs.io/en/release/ for more details.
The meta_info.txt is a specified txt file to record the meta information
of our datasets. It will be automatically created when preparing
datasets by our provided dataset tools.
Each line in the txt file records
1)image name (with extension),
2)image shape,
3)compression level, separated by a white space.
Example: `baboon.png (120,125,3) 1`
We use the image name without extension as the lmdb key.
Note that we use the same key for the corresponding lq and gt images.
Args:
folders (list[str]): A list of folder path. The order of list should
be [input_folder, gt_folder].
keys (list[str]): A list of keys identifying folders. The order should
be in consistent with folders, e.g., ['lq', 'gt'].
Note that this key is different from lmdb keys.
Returns:
list[str]: Returned path list.
"""
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
f'But got {len(folders)}')
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
input_folder, gt_folder = folders
input_key, gt_key = keys
if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
f'formats. But received {input_key}: {input_folder}; '
f'{gt_key}: {gt_folder}')
# ensure that the two meta_info files are the same
with open(osp.join(input_folder, 'meta_info.txt')) as fin:
input_lmdb_keys = [line.split('.')[0] for line in fin]
with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
gt_lmdb_keys = [line.split('.')[0] for line in fin]
if set(input_lmdb_keys) != set(gt_lmdb_keys):
raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
else:
paths = []
for lmdb_key in sorted(input_lmdb_keys):
paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
return paths
def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
"""Generate paired paths from an meta information file.
Each line in the meta information file contains the image names and
image shape (usually for gt), separated by a white space.
Example of an meta information file:
```
0001_s001.png (480,480,3)
0001_s002.png (480,480,3)
```
Args:
folders (list[str]): A list of folder path. The order of list should
be [input_folder, gt_folder].
keys (list[str]): A list of keys identifying folders. The order should
be in consistent with folders, e.g., ['lq', 'gt'].
meta_info_file (str): Path to the meta information file.
filename_tmpl (str): Template for each filename. Note that the
template excludes the file extension. Usually the filename_tmpl is
for files in the input folder.
Returns:
list[str]: Returned path list.
"""
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
f'But got {len(folders)}')
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
input_folder, gt_folder = folders
input_key, gt_key = keys
with open(meta_info_file, 'r') as fin:
gt_names = [line.split(' ')[0] for line in fin]
paths = []
for gt_name in gt_names:
basename, ext = osp.splitext(osp.basename(gt_name))
input_name = f'{filename_tmpl.format(basename)}{ext}'
input_path = osp.join(input_folder, input_name)
gt_path = osp.join(gt_folder, gt_name)
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
return paths
def paired_paths_from_folder(folders, keys, filename_tmpl):
"""Generate paired paths from folders.
Args:
folders (list[str]): A list of folder path. The order of list should
be [input_folder, gt_folder].
keys (list[str]): A list of keys identifying folders. The order should
be in consistent with folders, e.g., ['lq', 'gt'].
filename_tmpl (str): Template for each filename. Note that the
template excludes the file extension. Usually the filename_tmpl is
for files in the input folder.
Returns:
list[str]: Returned path list.
"""
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
f'But got {len(folders)}')
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
input_folder, gt_folder = folders
input_key, gt_key = keys
input_paths = list(scandir(input_folder))
gt_paths = list(scandir(gt_folder))
assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
f'{len(input_paths)}, {len(gt_paths)}.')
paths = []
for gt_path in gt_paths:
basename, ext = osp.splitext(osp.basename(gt_path))
input_name = f'{filename_tmpl.format(basename)}{ext}'
input_path = osp.join(input_folder, input_name)
assert input_name in input_paths, (f'{input_name} is not in ' f'{input_key}_paths.')
gt_path = osp.join(gt_folder, gt_path)
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
return paths
def paths_from_folder(folder):
"""Generate paths from folder.
Args:
folder (str): Folder path.
Returns:
list[str]: Returned path list.
"""
paths = list(scandir(folder))
paths = [osp.join(folder, path) for path in paths]
return paths
def paths_from_lmdb(folder):
"""Generate paths from lmdb.
Args:
folder (str): Folder path.
Returns:
list[str]: Returned path list.
"""
if not folder.endswith('.lmdb'):
raise ValueError(f'Folder {folder}folder should in lmdb format.')
with open(osp.join(folder, 'meta_info.txt')) as fin:
paths = [line.split('.')[0] for line in fin]
return paths
def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
"""Generate Gaussian kernel used in `duf_downsample`.
Args:
kernel_size (int): Kernel size. Default: 13.
sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
Returns:
np.array: The Gaussian kernel.
"""
from scipy.ndimage import filters as filters
kernel = np.zeros((kernel_size, kernel_size))
# set element at the middle to one, a dirac delta
kernel[kernel_size // 2, kernel_size // 2] = 1
# gaussian-smooth the dirac, resulting in a gaussian filter
return filters.gaussian_filter(kernel, sigma)
def duf_downsample(x, kernel_size=13, scale=4):
"""Downsamping with Gaussian kernel used in the DUF official code.
Args:
x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
kernel_size (int): Kernel size. Default: 13.
scale (int): Downsampling factor. Supported scale: (2, 3, 4).
Default: 4.
Returns:
Tensor: DUF downsampled frames.
"""
assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
squeeze_flag = False
if x.ndim == 4:
squeeze_flag = True
x = x.unsqueeze(0)
b, t, c, h, w = x.size()
x = x.view(-1, 1, h, w)
pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
x = F.conv2d(x, gaussian_filter, stride=scale)
x = x[:, :, 2:-2, 2:-2]
x = x.view(b, t, c, x.size(2), x.size(3))
if squeeze_flag:
x = x.squeeze(0)
return x
def brush_stroke_mask(img, color=(255,255,255)):
min_num_vertex = 8
max_num_vertex = 28
mean_angle = 2*math.pi / 5
angle_range = 2*math.pi / 12
# training large mask ratio (training setting)
min_width = 30
max_width = 70
# very large mask ratio (test setting and refine after 200k)
# min_width = 80
# max_width = 120
def generate_mask(H, W, img=None):
average_radius = math.sqrt(H*H+W*W) / 8
mask = Image.new('RGB', (W, H), 0)
if img is not None: mask = img # Image.fromarray(img)
for _ in range(np.random.randint(1, 4)):
num_vertex = np.random.randint(min_num_vertex, max_num_vertex)
angle_min = mean_angle - np.random.uniform(0, angle_range)
angle_max = mean_angle + np.random.uniform(0, angle_range)
angles = []
vertex = []
for i in range(num_vertex):
if i % 2 == 0:
angles.append(2*math.pi - np.random.uniform(angle_min, angle_max))
else:
angles.append(np.random.uniform(angle_min, angle_max))
h, w = mask.size
vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
for i in range(num_vertex):
r = np.clip(
np.random.normal(loc=average_radius, scale=average_radius//2),
0, 2*average_radius)
new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
vertex.append((int(new_x), int(new_y)))
draw = ImageDraw.Draw(mask)
width = int(np.random.uniform(min_width, max_width))
draw.line(vertex, fill=color, width=width)
for v in vertex:
draw.ellipse((v[0] - width//2,
v[1] - width//2,
v[0] + width//2,
v[1] + width//2),
fill=color)
return mask
width, height = img.size
mask = generate_mask(height, width, img)
return mask
def random_ff_mask(shape, max_angle = 10, max_len = 100, max_width = 70, times = 10):
"""Generate a random free form mask with configuration.
Args:
config: Config should have configuration including IMG_SHAPES,
VERTICAL_MARGIN, HEIGHT, HORIZONTAL_MARGIN, WIDTH.
Returns:
tuple: (top, left, height, width)
Link:
https://github.com/csqiangwen/DeepFillv2_Pytorch/blob/master/train_dataset.py
"""
height = shape[0]
width = shape[1]
mask = np.zeros((height, width), np.float32)
times = np.random.randint(times-5, times)
for i in range(times):
start_x = np.random.randint(width)
start_y = np.random.randint(height)
for j in range(1 + np.random.randint(5)):
angle = 0.01 + np.random.randint(max_angle)
if i % 2 == 0:
angle = 2 * 3.1415926 - angle
length = 10 + np.random.randint(max_len-20, max_len)
brush_w = 5 + np.random.randint(max_width-30, max_width)
end_x = (start_x + length * np.sin(angle)).astype(np.int32)
end_y = (start_y + length * np.cos(angle)).astype(np.int32)
cv2.line(mask, (start_y, start_x), (end_y, end_x), 1.0, brush_w)
start_x, start_y = end_x, end_y
return mask.astype(np.float32)