Spaces:
Runtime error
Runtime error
import cv2 | |
import math | |
import numpy as np | |
import torch | |
from os import path as osp | |
from PIL import Image, ImageDraw | |
from torch.nn import functional as F | |
from basicsr.data.transforms import mod_crop | |
from basicsr.utils import img2tensor, scandir | |
def read_img_seq(path, require_mod_crop=False, scale=1): | |
"""Read a sequence of images from a given folder path. | |
Args: | |
path (list[str] | str): List of image paths or image folder path. | |
require_mod_crop (bool): Require mod crop for each image. | |
Default: False. | |
scale (int): Scale factor for mod_crop. Default: 1. | |
Returns: | |
Tensor: size (t, c, h, w), RGB, [0, 1]. | |
""" | |
if isinstance(path, list): | |
img_paths = path | |
else: | |
img_paths = sorted(list(scandir(path, full_path=True))) | |
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths] | |
if require_mod_crop: | |
imgs = [mod_crop(img, scale) for img in imgs] | |
imgs = img2tensor(imgs, bgr2rgb=True, float32=True) | |
imgs = torch.stack(imgs, dim=0) | |
return imgs | |
def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'): | |
"""Generate an index list for reading `num_frames` frames from a sequence | |
of images. | |
Args: | |
crt_idx (int): Current center index. | |
max_frame_num (int): Max number of the sequence of images (from 1). | |
num_frames (int): Reading num_frames frames. | |
padding (str): Padding mode, one of | |
'replicate' | 'reflection' | 'reflection_circle' | 'circle' | |
Examples: current_idx = 0, num_frames = 5 | |
The generated frame indices under different padding mode: | |
replicate: [0, 0, 0, 1, 2] | |
reflection: [2, 1, 0, 1, 2] | |
reflection_circle: [4, 3, 0, 1, 2] | |
circle: [3, 4, 0, 1, 2] | |
Returns: | |
list[int]: A list of indices. | |
""" | |
assert num_frames % 2 == 1, 'num_frames should be an odd number.' | |
assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.' | |
max_frame_num = max_frame_num - 1 # start from 0 | |
num_pad = num_frames // 2 | |
indices = [] | |
for i in range(crt_idx - num_pad, crt_idx + num_pad + 1): | |
if i < 0: | |
if padding == 'replicate': | |
pad_idx = 0 | |
elif padding == 'reflection': | |
pad_idx = -i | |
elif padding == 'reflection_circle': | |
pad_idx = crt_idx + num_pad - i | |
else: | |
pad_idx = num_frames + i | |
elif i > max_frame_num: | |
if padding == 'replicate': | |
pad_idx = max_frame_num | |
elif padding == 'reflection': | |
pad_idx = max_frame_num * 2 - i | |
elif padding == 'reflection_circle': | |
pad_idx = (crt_idx - num_pad) - (i - max_frame_num) | |
else: | |
pad_idx = i - num_frames | |
else: | |
pad_idx = i | |
indices.append(pad_idx) | |
return indices | |
def paired_paths_from_lmdb(folders, keys): | |
"""Generate paired paths from lmdb files. | |
Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is: | |
lq.lmdb | |
├── data.mdb | |
├── lock.mdb | |
├── meta_info.txt | |
The data.mdb and lock.mdb are standard lmdb files and you can refer to | |
https://lmdb.readthedocs.io/en/release/ for more details. | |
The meta_info.txt is a specified txt file to record the meta information | |
of our datasets. It will be automatically created when preparing | |
datasets by our provided dataset tools. | |
Each line in the txt file records | |
1)image name (with extension), | |
2)image shape, | |
3)compression level, separated by a white space. | |
Example: `baboon.png (120,125,3) 1` | |
We use the image name without extension as the lmdb key. | |
Note that we use the same key for the corresponding lq and gt images. | |
Args: | |
folders (list[str]): A list of folder path. The order of list should | |
be [input_folder, gt_folder]. | |
keys (list[str]): A list of keys identifying folders. The order should | |
be in consistent with folders, e.g., ['lq', 'gt']. | |
Note that this key is different from lmdb keys. | |
Returns: | |
list[str]: Returned path list. | |
""" | |
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' | |
f'But got {len(folders)}') | |
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') | |
input_folder, gt_folder = folders | |
input_key, gt_key = keys | |
if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')): | |
raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb ' | |
f'formats. But received {input_key}: {input_folder}; ' | |
f'{gt_key}: {gt_folder}') | |
# ensure that the two meta_info files are the same | |
with open(osp.join(input_folder, 'meta_info.txt')) as fin: | |
input_lmdb_keys = [line.split('.')[0] for line in fin] | |
with open(osp.join(gt_folder, 'meta_info.txt')) as fin: | |
gt_lmdb_keys = [line.split('.')[0] for line in fin] | |
if set(input_lmdb_keys) != set(gt_lmdb_keys): | |
raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.') | |
else: | |
paths = [] | |
for lmdb_key in sorted(input_lmdb_keys): | |
paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)])) | |
return paths | |
def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl): | |
"""Generate paired paths from an meta information file. | |
Each line in the meta information file contains the image names and | |
image shape (usually for gt), separated by a white space. | |
Example of an meta information file: | |
``` | |
0001_s001.png (480,480,3) | |
0001_s002.png (480,480,3) | |
``` | |
Args: | |
folders (list[str]): A list of folder path. The order of list should | |
be [input_folder, gt_folder]. | |
keys (list[str]): A list of keys identifying folders. The order should | |
be in consistent with folders, e.g., ['lq', 'gt']. | |
meta_info_file (str): Path to the meta information file. | |
filename_tmpl (str): Template for each filename. Note that the | |
template excludes the file extension. Usually the filename_tmpl is | |
for files in the input folder. | |
Returns: | |
list[str]: Returned path list. | |
""" | |
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' | |
f'But got {len(folders)}') | |
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') | |
input_folder, gt_folder = folders | |
input_key, gt_key = keys | |
with open(meta_info_file, 'r') as fin: | |
gt_names = [line.split(' ')[0] for line in fin] | |
paths = [] | |
for gt_name in gt_names: | |
basename, ext = osp.splitext(osp.basename(gt_name)) | |
input_name = f'{filename_tmpl.format(basename)}{ext}' | |
input_path = osp.join(input_folder, input_name) | |
gt_path = osp.join(gt_folder, gt_name) | |
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)])) | |
return paths | |
def paired_paths_from_folder(folders, keys, filename_tmpl): | |
"""Generate paired paths from folders. | |
Args: | |
folders (list[str]): A list of folder path. The order of list should | |
be [input_folder, gt_folder]. | |
keys (list[str]): A list of keys identifying folders. The order should | |
be in consistent with folders, e.g., ['lq', 'gt']. | |
filename_tmpl (str): Template for each filename. Note that the | |
template excludes the file extension. Usually the filename_tmpl is | |
for files in the input folder. | |
Returns: | |
list[str]: Returned path list. | |
""" | |
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' | |
f'But got {len(folders)}') | |
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') | |
input_folder, gt_folder = folders | |
input_key, gt_key = keys | |
input_paths = list(scandir(input_folder)) | |
gt_paths = list(scandir(gt_folder)) | |
assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: ' | |
f'{len(input_paths)}, {len(gt_paths)}.') | |
paths = [] | |
for gt_path in gt_paths: | |
basename, ext = osp.splitext(osp.basename(gt_path)) | |
input_name = f'{filename_tmpl.format(basename)}{ext}' | |
input_path = osp.join(input_folder, input_name) | |
assert input_name in input_paths, (f'{input_name} is not in ' f'{input_key}_paths.') | |
gt_path = osp.join(gt_folder, gt_path) | |
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)])) | |
return paths | |
def paths_from_folder(folder): | |
"""Generate paths from folder. | |
Args: | |
folder (str): Folder path. | |
Returns: | |
list[str]: Returned path list. | |
""" | |
paths = list(scandir(folder)) | |
paths = [osp.join(folder, path) for path in paths] | |
return paths | |
def paths_from_lmdb(folder): | |
"""Generate paths from lmdb. | |
Args: | |
folder (str): Folder path. | |
Returns: | |
list[str]: Returned path list. | |
""" | |
if not folder.endswith('.lmdb'): | |
raise ValueError(f'Folder {folder}folder should in lmdb format.') | |
with open(osp.join(folder, 'meta_info.txt')) as fin: | |
paths = [line.split('.')[0] for line in fin] | |
return paths | |
def generate_gaussian_kernel(kernel_size=13, sigma=1.6): | |
"""Generate Gaussian kernel used in `duf_downsample`. | |
Args: | |
kernel_size (int): Kernel size. Default: 13. | |
sigma (float): Sigma of the Gaussian kernel. Default: 1.6. | |
Returns: | |
np.array: The Gaussian kernel. | |
""" | |
from scipy.ndimage import filters as filters | |
kernel = np.zeros((kernel_size, kernel_size)) | |
# set element at the middle to one, a dirac delta | |
kernel[kernel_size // 2, kernel_size // 2] = 1 | |
# gaussian-smooth the dirac, resulting in a gaussian filter | |
return filters.gaussian_filter(kernel, sigma) | |
def duf_downsample(x, kernel_size=13, scale=4): | |
"""Downsamping with Gaussian kernel used in the DUF official code. | |
Args: | |
x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w). | |
kernel_size (int): Kernel size. Default: 13. | |
scale (int): Downsampling factor. Supported scale: (2, 3, 4). | |
Default: 4. | |
Returns: | |
Tensor: DUF downsampled frames. | |
""" | |
assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.' | |
squeeze_flag = False | |
if x.ndim == 4: | |
squeeze_flag = True | |
x = x.unsqueeze(0) | |
b, t, c, h, w = x.size() | |
x = x.view(-1, 1, h, w) | |
pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2 | |
x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect') | |
gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale) | |
gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0) | |
x = F.conv2d(x, gaussian_filter, stride=scale) | |
x = x[:, :, 2:-2, 2:-2] | |
x = x.view(b, t, c, x.size(2), x.size(3)) | |
if squeeze_flag: | |
x = x.squeeze(0) | |
return x | |
def brush_stroke_mask(img, color=(255,255,255)): | |
min_num_vertex = 8 | |
max_num_vertex = 28 | |
mean_angle = 2*math.pi / 5 | |
angle_range = 2*math.pi / 12 | |
# training large mask ratio (training setting) | |
min_width = 30 | |
max_width = 70 | |
# very large mask ratio (test setting and refine after 200k) | |
# min_width = 80 | |
# max_width = 120 | |
def generate_mask(H, W, img=None): | |
average_radius = math.sqrt(H*H+W*W) / 8 | |
mask = Image.new('RGB', (W, H), 0) | |
if img is not None: mask = img # Image.fromarray(img) | |
for _ in range(np.random.randint(1, 4)): | |
num_vertex = np.random.randint(min_num_vertex, max_num_vertex) | |
angle_min = mean_angle - np.random.uniform(0, angle_range) | |
angle_max = mean_angle + np.random.uniform(0, angle_range) | |
angles = [] | |
vertex = [] | |
for i in range(num_vertex): | |
if i % 2 == 0: | |
angles.append(2*math.pi - np.random.uniform(angle_min, angle_max)) | |
else: | |
angles.append(np.random.uniform(angle_min, angle_max)) | |
h, w = mask.size | |
vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h)))) | |
for i in range(num_vertex): | |
r = np.clip( | |
np.random.normal(loc=average_radius, scale=average_radius//2), | |
0, 2*average_radius) | |
new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w) | |
new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h) | |
vertex.append((int(new_x), int(new_y))) | |
draw = ImageDraw.Draw(mask) | |
width = int(np.random.uniform(min_width, max_width)) | |
draw.line(vertex, fill=color, width=width) | |
for v in vertex: | |
draw.ellipse((v[0] - width//2, | |
v[1] - width//2, | |
v[0] + width//2, | |
v[1] + width//2), | |
fill=color) | |
return mask | |
width, height = img.size | |
mask = generate_mask(height, width, img) | |
return mask | |
def random_ff_mask(shape, max_angle = 10, max_len = 100, max_width = 70, times = 10): | |
"""Generate a random free form mask with configuration. | |
Args: | |
config: Config should have configuration including IMG_SHAPES, | |
VERTICAL_MARGIN, HEIGHT, HORIZONTAL_MARGIN, WIDTH. | |
Returns: | |
tuple: (top, left, height, width) | |
Link: | |
https://github.com/csqiangwen/DeepFillv2_Pytorch/blob/master/train_dataset.py | |
""" | |
height = shape[0] | |
width = shape[1] | |
mask = np.zeros((height, width), np.float32) | |
times = np.random.randint(times-5, times) | |
for i in range(times): | |
start_x = np.random.randint(width) | |
start_y = np.random.randint(height) | |
for j in range(1 + np.random.randint(5)): | |
angle = 0.01 + np.random.randint(max_angle) | |
if i % 2 == 0: | |
angle = 2 * 3.1415926 - angle | |
length = 10 + np.random.randint(max_len-20, max_len) | |
brush_w = 5 + np.random.randint(max_width-30, max_width) | |
end_x = (start_x + length * np.sin(angle)).astype(np.int32) | |
end_y = (start_y + length * np.cos(angle)).astype(np.int32) | |
cv2.line(mask, (start_y, start_x), (end_y, end_x), 1.0, brush_w) | |
start_x, start_y = end_x, end_y | |
return mask.astype(np.float32) |