Tzktz's picture
Upload 174 files
8e542dc verified
raw
history blame
13.4 kB
import cv2
import math
import random
import numpy as np
import os.path as osp
from scipy.io import loadmat
from PIL import Image
import torch
import torch.utils.data as data
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast,
adjust_hue, adjust_saturation, normalize)
from basicsr.data import gaussian_kernels as gaussian_kernels
from basicsr.data.transforms import augment
from basicsr.data.data_util import paths_from_folder, brush_stroke_mask, random_ff_mask
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class FFHQBlindDataset(data.Dataset):
def __init__(self, opt):
super(FFHQBlindDataset, self).__init__()
logger = get_root_logger()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.gt_folder = opt['dataroot_gt']
self.gt_size = opt.get('gt_size', 512)
self.in_size = opt.get('in_size', 512)
assert self.gt_size >= self.in_size, 'Wrong setting.'
self.mean = opt.get('mean', [0.5, 0.5, 0.5])
self.std = opt.get('std', [0.5, 0.5, 0.5])
self.component_path = opt.get('component_path', None)
self.latent_gt_path = opt.get('latent_gt_path', None)
if self.component_path is not None:
self.crop_components = True
self.components_dict = torch.load(self.component_path)
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1.4)
self.nose_enlarge_ratio = opt.get('nose_enlarge_ratio', 1.1)
self.mouth_enlarge_ratio = opt.get('mouth_enlarge_ratio', 1.3)
else:
self.crop_components = False
if self.latent_gt_path is not None:
self.load_latent_gt = True
self.latent_gt_dict = torch.load(self.latent_gt_path)
else:
self.load_latent_gt = False
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = self.gt_folder
if not self.gt_folder.endswith('.lmdb'):
raise ValueError("'dataroot_gt' should end with '.lmdb', "f'but received {self.gt_folder}')
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
self.paths = [line.split('.')[0] for line in fin]
else:
self.paths = paths_from_folder(self.gt_folder)
# inpainting mask
self.gen_inpaint_mask = opt.get('gen_inpaint_mask', False)
if self.gen_inpaint_mask:
logger.info(f'generate mask ...')
# self.mask_max_angle = opt.get('mask_max_angle', 10)
# self.mask_max_len = opt.get('mask_max_len', 150)
# self.mask_max_width = opt.get('mask_max_width', 50)
# self.mask_draw_times = opt.get('mask_draw_times', 10)
# # print
# logger.info(f'mask_max_angle: {self.mask_max_angle}')
# logger.info(f'mask_max_len: {self.mask_max_len}')
# logger.info(f'mask_max_width: {self.mask_max_width}')
# logger.info(f'mask_draw_times: {self.mask_draw_times}')
# perform corrupt
self.use_corrupt = opt.get('use_corrupt', True)
self.use_motion_kernel = False
# self.use_motion_kernel = opt.get('use_motion_kernel', True)
if self.use_motion_kernel:
self.motion_kernel_prob = opt.get('motion_kernel_prob', 0.001)
motion_kernel_path = opt.get('motion_kernel_path', 'basicsr/data/motion-blur-kernels-32.pth')
self.motion_kernels = torch.load(motion_kernel_path)
if self.use_corrupt and not self.gen_inpaint_mask:
# degradation configurations
self.blur_kernel_size = opt['blur_kernel_size']
self.blur_sigma = opt['blur_sigma']
self.kernel_list = opt['kernel_list']
self.kernel_prob = opt['kernel_prob']
self.downsample_range = opt['downsample_range']
self.noise_range = opt['noise_range']
self.jpeg_range = opt['jpeg_range']
# print
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
# color jitter
self.color_jitter_prob = opt.get('color_jitter_prob', None)
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob', None)
self.color_jitter_shift = opt.get('color_jitter_shift', 20)
if self.color_jitter_prob is not None:
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
# to gray
self.gray_prob = opt.get('gray_prob', 0.0)
if self.gray_prob is not None:
logger.info(f'Use random gray. Prob: {self.gray_prob}')
self.color_jitter_shift /= 255.
@staticmethod
def color_jitter(img, shift):
"""jitter color: randomly jitter the RGB values, in numpy formats"""
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
img = img + jitter_val
img = np.clip(img, 0, 1)
return img
@staticmethod
def color_jitter_pt(img, brightness, contrast, saturation, hue):
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
fn_idx = torch.randperm(4)
for fn_id in fn_idx:
if fn_id == 0 and brightness is not None:
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
img = adjust_brightness(img, brightness_factor)
if fn_id == 1 and contrast is not None:
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
img = adjust_contrast(img, contrast_factor)
if fn_id == 2 and saturation is not None:
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
img = adjust_saturation(img, saturation_factor)
if fn_id == 3 and hue is not None:
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
img = adjust_hue(img, hue_factor)
return img
def get_component_locations(self, name, status):
components_bbox = self.components_dict[name]
if status[0]: # hflip
# exchange right and left eye
tmp = components_bbox['left_eye']
components_bbox['left_eye'] = components_bbox['right_eye']
components_bbox['right_eye'] = tmp
# modify the width coordinate
components_bbox['left_eye'][0] = self.gt_size - components_bbox['left_eye'][0]
components_bbox['right_eye'][0] = self.gt_size - components_bbox['right_eye'][0]
components_bbox['nose'][0] = self.gt_size - components_bbox['nose'][0]
components_bbox['mouth'][0] = self.gt_size - components_bbox['mouth'][0]
locations_gt = {}
locations_in = {}
for part in ['left_eye', 'right_eye', 'nose', 'mouth']:
mean = components_bbox[part][0:2]
half_len = components_bbox[part][2]
if 'eye' in part:
half_len *= self.eye_enlarge_ratio
elif part == 'nose':
half_len *= self.nose_enlarge_ratio
elif part == 'mouth':
half_len *= self.mouth_enlarge_ratio
loc = np.hstack((mean - half_len + 1, mean + half_len))
loc = torch.from_numpy(loc).float()
locations_gt[part] = loc
loc_in = loc/(self.gt_size//self.in_size)
locations_in[part] = loc_in
return locations_gt, locations_in
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load gt image
gt_path = self.paths[index]
name = osp.basename(gt_path)[:-4]
img_bytes = self.file_client.get(gt_path)
img_gt = imfrombytes(img_bytes, float32=True)
# random horizontal flip
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
if self.load_latent_gt:
if status[0]:
latent_gt = self.latent_gt_dict['hflip'][name]
else:
latent_gt = self.latent_gt_dict['orig'][name]
if self.crop_components:
locations_gt, locations_in = self.get_component_locations(name, status)
# generate in image
img_in = img_gt
if self.use_corrupt and not self.gen_inpaint_mask:
# motion blur
if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
m_i = random.randint(0,31)
k = self.motion_kernels[f'{m_i:02d}']
img_in = cv2.filter2D(img_in,-1,k)
# gaussian blur
kernel = gaussian_kernels.random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
self.blur_kernel_size,
self.blur_sigma,
self.blur_sigma,
[-math.pi, math.pi],
noise_range=None)
img_in = cv2.filter2D(img_in, -1, kernel)
# downsample
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
img_in = cv2.resize(img_in, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
# noise
if self.noise_range is not None:
noise_sigma = np.random.uniform(self.noise_range[0] / 255., self.noise_range[1] / 255.)
noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma
img_in = img_in + noise
img_in = np.clip(img_in, 0, 1)
# jpeg
if self.jpeg_range is not None:
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
# resize to in_size
img_in = cv2.resize(img_in, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
# if self.gen_inpaint_mask:
# inpaint_mask = random_ff_mask(shape=(self.gt_size,self.gt_size),
# max_angle = self.mask_max_angle, max_len = self.mask_max_len,
# max_width = self.mask_max_width, times = self.mask_draw_times)
# img_in = img_in * (1 - inpaint_mask.reshape(self.gt_size,self.gt_size,1)) + \
# 1.0 * inpaint_mask.reshape(self.gt_size,self.gt_size,1)
# inpaint_mask = torch.from_numpy(inpaint_mask).view(1,self.gt_size,self.gt_size)
if self.gen_inpaint_mask:
img_in = (img_in*255).astype('uint8')
img_in = brush_stroke_mask(Image.fromarray(img_in))
img_in = np.array(img_in) / 255.
# random color jitter (only for lq)
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
img_in = self.color_jitter(img_in, self.color_jitter_shift)
# random to gray (only for lq)
if self.gray_prob and np.random.uniform() < self.gray_prob:
img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)
img_in = np.tile(img_in[:, :, None], [1, 1, 3])
# BGR to RGB, HWC to CHW, numpy to tensor
img_in, img_gt = img2tensor([img_in, img_gt], bgr2rgb=True, float32=True)
# random color jitter (pytorch version) (only for lq)
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
brightness = self.opt.get('brightness', (0.5, 1.5))
contrast = self.opt.get('contrast', (0.5, 1.5))
saturation = self.opt.get('saturation', (0, 1.5))
hue = self.opt.get('hue', (-0.1, 0.1))
img_in = self.color_jitter_pt(img_in, brightness, contrast, saturation, hue)
# round and clip
img_in = np.clip((img_in * 255.0).round(), 0, 255) / 255.
# Set vgg range_norm=True if use the normalization here
# normalize
normalize(img_in, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
return_dict = {'in': img_in, 'gt': img_gt, 'gt_path': gt_path}
if self.crop_components:
return_dict['locations_in'] = locations_in
return_dict['locations_gt'] = locations_gt
if self.load_latent_gt:
return_dict['latent_gt'] = latent_gt
# if self.gen_inpaint_mask:
# return_dict['inpaint_mask'] = inpaint_mask
return return_dict
def __len__(self):
return len(self.paths)