Spaces:
Runtime error
Runtime error
import cv2 | |
import math | |
import random | |
import numpy as np | |
import os.path as osp | |
from scipy.io import loadmat | |
import torch | |
import torch.utils.data as data | |
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, | |
adjust_hue, adjust_saturation, normalize) | |
from basicsr.data import gaussian_kernels as gaussian_kernels | |
from basicsr.data.transforms import augment | |
from basicsr.data.data_util import paths_from_folder | |
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor | |
from basicsr.utils.registry import DATASET_REGISTRY | |
class FFHQBlindJointDataset(data.Dataset): | |
def __init__(self, opt): | |
super(FFHQBlindJointDataset, self).__init__() | |
logger = get_root_logger() | |
self.opt = opt | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.gt_folder = opt['dataroot_gt'] | |
self.gt_size = opt.get('gt_size', 512) | |
self.in_size = opt.get('in_size', 512) | |
assert self.gt_size >= self.in_size, 'Wrong setting.' | |
self.mean = opt.get('mean', [0.5, 0.5, 0.5]) | |
self.std = opt.get('std', [0.5, 0.5, 0.5]) | |
self.component_path = opt.get('component_path', None) | |
self.latent_gt_path = opt.get('latent_gt_path', None) | |
if self.component_path is not None: | |
self.crop_components = True | |
self.components_dict = torch.load(self.component_path) | |
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1.4) | |
self.nose_enlarge_ratio = opt.get('nose_enlarge_ratio', 1.1) | |
self.mouth_enlarge_ratio = opt.get('mouth_enlarge_ratio', 1.3) | |
else: | |
self.crop_components = False | |
if self.latent_gt_path is not None: | |
self.load_latent_gt = True | |
self.latent_gt_dict = torch.load(self.latent_gt_path) | |
else: | |
self.load_latent_gt = False | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.io_backend_opt['db_paths'] = self.gt_folder | |
if not self.gt_folder.endswith('.lmdb'): | |
raise ValueError("'dataroot_gt' should end with '.lmdb', "f'but received {self.gt_folder}') | |
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: | |
self.paths = [line.split('.')[0] for line in fin] | |
else: | |
self.paths = paths_from_folder(self.gt_folder) | |
# perform corrupt | |
self.use_corrupt = opt.get('use_corrupt', True) | |
self.use_motion_kernel = False | |
# self.use_motion_kernel = opt.get('use_motion_kernel', True) | |
if self.use_motion_kernel: | |
self.motion_kernel_prob = opt.get('motion_kernel_prob', 0.001) | |
motion_kernel_path = opt.get('motion_kernel_path', 'basicsr/data/motion-blur-kernels-32.pth') | |
self.motion_kernels = torch.load(motion_kernel_path) | |
if self.use_corrupt: | |
# degradation configurations | |
self.blur_kernel_size = self.opt['blur_kernel_size'] | |
self.kernel_list = self.opt['kernel_list'] | |
self.kernel_prob = self.opt['kernel_prob'] | |
# Small degradation | |
self.blur_sigma = self.opt['blur_sigma'] | |
self.downsample_range = self.opt['downsample_range'] | |
self.noise_range = self.opt['noise_range'] | |
self.jpeg_range = self.opt['jpeg_range'] | |
# Large degradation | |
self.blur_sigma_large = self.opt['blur_sigma_large'] | |
self.downsample_range_large = self.opt['downsample_range_large'] | |
self.noise_range_large = self.opt['noise_range_large'] | |
self.jpeg_range_large = self.opt['jpeg_range_large'] | |
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]') | |
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]') | |
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]') | |
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]') | |
# color jitter | |
self.color_jitter_prob = opt.get('color_jitter_prob', None) | |
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob', None) | |
self.color_jitter_shift = opt.get('color_jitter_shift', 20) | |
if self.color_jitter_prob is not None: | |
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}') | |
# to gray | |
self.gray_prob = opt.get('gray_prob', 0.0) | |
if self.gray_prob is not None: | |
logger.info(f'Use random gray. Prob: {self.gray_prob}') | |
self.color_jitter_shift /= 255. | |
def color_jitter(img, shift): | |
"""jitter color: randomly jitter the RGB values, in numpy formats""" | |
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32) | |
img = img + jitter_val | |
img = np.clip(img, 0, 1) | |
return img | |
def color_jitter_pt(img, brightness, contrast, saturation, hue): | |
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats""" | |
fn_idx = torch.randperm(4) | |
for fn_id in fn_idx: | |
if fn_id == 0 and brightness is not None: | |
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item() | |
img = adjust_brightness(img, brightness_factor) | |
if fn_id == 1 and contrast is not None: | |
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item() | |
img = adjust_contrast(img, contrast_factor) | |
if fn_id == 2 and saturation is not None: | |
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item() | |
img = adjust_saturation(img, saturation_factor) | |
if fn_id == 3 and hue is not None: | |
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item() | |
img = adjust_hue(img, hue_factor) | |
return img | |
def get_component_locations(self, name, status): | |
components_bbox = self.components_dict[name] | |
if status[0]: # hflip | |
# exchange right and left eye | |
tmp = components_bbox['left_eye'] | |
components_bbox['left_eye'] = components_bbox['right_eye'] | |
components_bbox['right_eye'] = tmp | |
# modify the width coordinate | |
components_bbox['left_eye'][0] = self.gt_size - components_bbox['left_eye'][0] | |
components_bbox['right_eye'][0] = self.gt_size - components_bbox['right_eye'][0] | |
components_bbox['nose'][0] = self.gt_size - components_bbox['nose'][0] | |
components_bbox['mouth'][0] = self.gt_size - components_bbox['mouth'][0] | |
locations_gt = {} | |
locations_in = {} | |
for part in ['left_eye', 'right_eye', 'nose', 'mouth']: | |
mean = components_bbox[part][0:2] | |
half_len = components_bbox[part][2] | |
if 'eye' in part: | |
half_len *= self.eye_enlarge_ratio | |
elif part == 'nose': | |
half_len *= self.nose_enlarge_ratio | |
elif part == 'mouth': | |
half_len *= self.mouth_enlarge_ratio | |
loc = np.hstack((mean - half_len + 1, mean + half_len)) | |
loc = torch.from_numpy(loc).float() | |
locations_gt[part] = loc | |
loc_in = loc/(self.gt_size//self.in_size) | |
locations_in[part] = loc_in | |
return locations_gt, locations_in | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# load gt image | |
gt_path = self.paths[index] | |
name = osp.basename(gt_path)[:-4] | |
img_bytes = self.file_client.get(gt_path) | |
img_gt = imfrombytes(img_bytes, float32=True) | |
# random horizontal flip | |
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True) | |
if self.load_latent_gt: | |
if status[0]: | |
latent_gt = self.latent_gt_dict['hflip'][name] | |
else: | |
latent_gt = self.latent_gt_dict['orig'][name] | |
if self.crop_components: | |
locations_gt, locations_in = self.get_component_locations(name, status) | |
# generate in image | |
img_in = img_gt | |
if self.use_corrupt: | |
# motion blur | |
if self.use_motion_kernel and random.random() < self.motion_kernel_prob: | |
m_i = random.randint(0,31) | |
k = self.motion_kernels[f'{m_i:02d}'] | |
img_in = cv2.filter2D(img_in,-1,k) | |
# gaussian blur | |
kernel = gaussian_kernels.random_mixed_kernels( | |
self.kernel_list, | |
self.kernel_prob, | |
self.blur_kernel_size, | |
self.blur_sigma, | |
self.blur_sigma, | |
[-math.pi, math.pi], | |
noise_range=None) | |
img_in = cv2.filter2D(img_in, -1, kernel) | |
# downsample | |
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1]) | |
img_in = cv2.resize(img_in, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR) | |
# noise | |
if self.noise_range is not None: | |
noise_sigma = np.random.uniform(self.noise_range[0] / 255., self.noise_range[1] / 255.) | |
noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma | |
img_in = img_in + noise | |
img_in = np.clip(img_in, 0, 1) | |
# jpeg | |
if self.jpeg_range is not None: | |
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1]) | |
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p] | |
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param) | |
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255. | |
# resize to in_size | |
img_in = cv2.resize(img_in, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR) | |
# generate in_large with large degradation | |
img_in_large = img_gt | |
if self.use_corrupt: | |
# motion blur | |
if self.use_motion_kernel and random.random() < self.motion_kernel_prob: | |
m_i = random.randint(0,31) | |
k = self.motion_kernels[f'{m_i:02d}'] | |
img_in_large = cv2.filter2D(img_in_large,-1,k) | |
# gaussian blur | |
kernel = gaussian_kernels.random_mixed_kernels( | |
self.kernel_list, | |
self.kernel_prob, | |
self.blur_kernel_size, | |
self.blur_sigma_large, | |
self.blur_sigma_large, | |
[-math.pi, math.pi], | |
noise_range=None) | |
img_in_large = cv2.filter2D(img_in_large, -1, kernel) | |
# downsample | |
scale = np.random.uniform(self.downsample_range_large[0], self.downsample_range_large[1]) | |
img_in_large = cv2.resize(img_in_large, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR) | |
# noise | |
if self.noise_range_large is not None: | |
noise_sigma = np.random.uniform(self.noise_range_large[0] / 255., self.noise_range_large[1] / 255.) | |
noise = np.float32(np.random.randn(*(img_in_large.shape))) * noise_sigma | |
img_in_large = img_in_large + noise | |
img_in_large = np.clip(img_in_large, 0, 1) | |
# jpeg | |
if self.jpeg_range_large is not None: | |
jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1]) | |
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p] | |
_, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param) | |
img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255. | |
# resize to in_size | |
img_in_large = cv2.resize(img_in_large, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR) | |
# random color jitter (only for lq) | |
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob): | |
img_in = self.color_jitter(img_in, self.color_jitter_shift) | |
img_in_large = self.color_jitter(img_in_large, self.color_jitter_shift) | |
# random to gray (only for lq) | |
if self.gray_prob and np.random.uniform() < self.gray_prob: | |
img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY) | |
img_in = np.tile(img_in[:, :, None], [1, 1, 3]) | |
img_in_large = cv2.cvtColor(img_in_large, cv2.COLOR_BGR2GRAY) | |
img_in_large = np.tile(img_in_large[:, :, None], [1, 1, 3]) | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_in, img_in_large, img_gt = img2tensor([img_in, img_in_large, img_gt], bgr2rgb=True, float32=True) | |
# random color jitter (pytorch version) (only for lq) | |
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob): | |
brightness = self.opt.get('brightness', (0.5, 1.5)) | |
contrast = self.opt.get('contrast', (0.5, 1.5)) | |
saturation = self.opt.get('saturation', (0, 1.5)) | |
hue = self.opt.get('hue', (-0.1, 0.1)) | |
img_in = self.color_jitter_pt(img_in, brightness, contrast, saturation, hue) | |
img_in_large = self.color_jitter_pt(img_in_large, brightness, contrast, saturation, hue) | |
# round and clip | |
img_in = np.clip((img_in * 255.0).round(), 0, 255) / 255. | |
img_in_large = np.clip((img_in_large * 255.0).round(), 0, 255) / 255. | |
# Set vgg range_norm=True if use the normalization here | |
# normalize | |
normalize(img_in, self.mean, self.std, inplace=True) | |
normalize(img_in_large, self.mean, self.std, inplace=True) | |
normalize(img_gt, self.mean, self.std, inplace=True) | |
return_dict = {'in': img_in, 'in_large_de': img_in_large, 'gt': img_gt, 'gt_path': gt_path} | |
if self.crop_components: | |
return_dict['locations_in'] = locations_in | |
return_dict['locations_gt'] = locations_gt | |
if self.load_latent_gt: | |
return_dict['latent_gt'] = latent_gt | |
return return_dict | |
def __len__(self): | |
return len(self.paths) | |