Spaces:
Runtime error
Runtime error
import math | |
import numpy as np | |
import random | |
from scipy.ndimage.interpolation import shift | |
from scipy.stats import multivariate_normal | |
def sigma_matrix2(sig_x, sig_y, theta): | |
"""Calculate the rotated sigma matrix (two dimensional matrix). | |
Args: | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
Returns: | |
ndarray: Rotated sigma matrix. | |
""" | |
D = np.array([[sig_x**2, 0], [0, sig_y**2]]) | |
U = np.array([[np.cos(theta), -np.sin(theta)], | |
[np.sin(theta), np.cos(theta)]]) | |
return np.dot(U, np.dot(D, U.T)) | |
def mesh_grid(kernel_size): | |
"""Generate the mesh grid, centering at zero. | |
Args: | |
kernel_size (int): | |
Returns: | |
xy (ndarray): with the shape (kernel_size, kernel_size, 2) | |
xx (ndarray): with the shape (kernel_size, kernel_size) | |
yy (ndarray): with the shape (kernel_size, kernel_size) | |
""" | |
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) | |
xx, yy = np.meshgrid(ax, ax) | |
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), | |
yy.reshape(kernel_size * kernel_size, | |
1))).reshape(kernel_size, kernel_size, 2) | |
return xy, xx, yy | |
def pdf2(sigma_matrix, grid): | |
"""Calculate PDF of the bivariate Gaussian distribution. | |
Args: | |
sigma_matrix (ndarray): with the shape (2, 2) | |
grid (ndarray): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. | |
Returns: | |
kernel (ndarrray): un-normalized kernel. | |
""" | |
inverse_sigma = np.linalg.inv(sigma_matrix) | |
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) | |
return kernel | |
def cdf2(D, grid): | |
"""Calculate the CDF of the standard bivariate Gaussian distribution. | |
Used in skewed Gaussian distribution. | |
Args: | |
D (ndarrasy): skew matrix. | |
grid (ndarray): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. | |
Returns: | |
cdf (ndarray): skewed cdf. | |
""" | |
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]]) | |
grid = np.dot(grid, D) | |
cdf = rv.cdf(grid) | |
return cdf | |
def bivariate_skew_Gaussian(kernel_size, sig_x, sig_y, theta, D, grid=None): | |
"""Generate a bivariate skew Gaussian kernel. | |
Described in `A multivariate skew normal distribution`_ by Shi et. al (2004). | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
D (ndarrasy): skew matrix. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
Returns: | |
kernel (ndarray): normalized kernel. | |
.. _A multivariate skew normal distribution: | |
https://www.sciencedirect.com/science/article/pii/S0047259X03001313 | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) | |
pdf = pdf2(sigma_matrix, grid) | |
cdf = cdf2(D, grid) | |
kernel = pdf * cdf | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def mass_center_shift(kernel_size, kernel): | |
"""Calculate the shift of the mass center of a kenrel. | |
Args: | |
kernel_size (int): | |
kernel (ndarray): normalized kernel. | |
Returns: | |
delta_h (float): | |
delta_w (float): | |
""" | |
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) | |
col_sum, row_sum = np.sum(kernel, axis=0), np.sum(kernel, axis=1) | |
delta_h = np.dot(row_sum, ax) | |
delta_w = np.dot(col_sum, ax) | |
return delta_h, delta_w | |
def bivariate_skew_Gaussian_center(kernel_size, | |
sig_x, | |
sig_y, | |
theta, | |
D, | |
grid=None): | |
"""Generate a bivariate skew Gaussian kernel at center. Shift with nearest padding. | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
D (ndarrasy): skew matrix. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
Returns: | |
kernel (ndarray): centered and normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
kernel = bivariate_skew_Gaussian(kernel_size, sig_x, sig_y, theta, D, grid) | |
delta_h, delta_w = mass_center_shift(kernel_size, kernel) | |
kernel = shift(kernel, [-delta_h, -delta_w], mode='nearest') | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def bivariate_anisotropic_Gaussian(kernel_size, | |
sig_x, | |
sig_y, | |
theta, | |
grid=None): | |
"""Generate a bivariate anisotropic Gaussian kernel. | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
Returns: | |
kernel (ndarray): normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) | |
kernel = pdf2(sigma_matrix, grid) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def bivariate_isotropic_Gaussian(kernel_size, sig, grid=None): | |
"""Generate a bivariate isotropic Gaussian kernel. | |
Args: | |
kernel_size (int): | |
sig (float): | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
Returns: | |
kernel (ndarray): normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
sigma_matrix = np.array([[sig**2, 0], [0, sig**2]]) | |
kernel = pdf2(sigma_matrix, grid) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def bivariate_generalized_Gaussian(kernel_size, | |
sig_x, | |
sig_y, | |
theta, | |
beta, | |
grid=None): | |
"""Generate a bivariate generalized Gaussian kernel. | |
Described in `Parameter Estimation For Multivariate Generalized Gaussian Distributions`_ | |
by Pascal et. al (2013). | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
beta (float): shape parameter, beta = 1 is the normal distribution. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
Returns: | |
kernel (ndarray): normalized kernel. | |
.. _Parameter Estimation For Multivariate Generalized Gaussian Distributions: | |
https://arxiv.org/abs/1302.6498 | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) | |
inverse_sigma = np.linalg.inv(sigma_matrix) | |
kernel = np.exp( | |
-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta)) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def bivariate_plateau_type1(kernel_size, sig_x, sig_y, theta, beta, grid=None): | |
"""Generate a plateau-like anisotropic kernel. | |
1 / (1+x^(beta)) | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
beta (float): shape parameter, beta = 1 is the normal distribution. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
Returns: | |
kernel (ndarray): normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) | |
inverse_sigma = np.linalg.inv(sigma_matrix) | |
kernel = np.reciprocal( | |
np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def bivariate_plateau_type1_iso(kernel_size, sig, beta, grid=None): | |
"""Generate a plateau-like isotropic kernel. | |
1 / (1+x^(beta)) | |
Args: | |
kernel_size (int): | |
sig (float): | |
beta (float): shape parameter, beta = 1 is the normal distribution. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
Returns: | |
kernel (ndarray): normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
sigma_matrix = np.array([[sig**2, 0], [0, sig**2]]) | |
inverse_sigma = np.linalg.inv(sigma_matrix) | |
kernel = np.reciprocal( | |
np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def random_bivariate_skew_Gaussian_center(kernel_size, | |
sigma_x_range, | |
sigma_y_range, | |
rotation_range, | |
noise_range=None, | |
strict=False): | |
"""Randomly generate bivariate skew Gaussian kernels at center. | |
Args: | |
kernel_size (int): | |
sigma_x_range (tuple): [0.6, 5] | |
sigma_y_range (tuple): [0.6, 5] | |
rotation range (tuple): [-math.pi, math.pi] | |
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None | |
Returns: | |
kernel (ndarray): | |
""" | |
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' | |
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' | |
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' | |
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' | |
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) | |
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) | |
if strict: | |
sigma_max = np.max([sigma_x, sigma_y]) | |
sigma_min = np.min([sigma_x, sigma_y]) | |
sigma_x, sigma_y = sigma_max, sigma_min | |
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) | |
sigma_max = np.max([sigma_x, sigma_y]) | |
thres = 3 / sigma_max | |
D = [[np.random.uniform(-thres, thres), | |
np.random.uniform(-thres, thres)], | |
[np.random.uniform(-thres, thres), | |
np.random.uniform(-thres, thres)]] | |
kernel = bivariate_skew_Gaussian_center(kernel_size, sigma_x, sigma_y, | |
rotation, D) | |
# add multiplicative noise | |
if noise_range is not None: | |
assert noise_range[0] < noise_range[1], 'Wrong noise range.' | |
noise = np.random.uniform( | |
noise_range[0], noise_range[1], size=kernel.shape) | |
kernel = kernel * noise | |
kernel = kernel / np.sum(kernel) | |
if strict: | |
return kernel, sigma_x, sigma_y, rotation, D | |
else: | |
return kernel | |
def random_bivariate_anisotropic_Gaussian(kernel_size, | |
sigma_x_range, | |
sigma_y_range, | |
rotation_range, | |
noise_range=None, | |
strict=False): | |
"""Randomly generate bivariate anisotropic Gaussian kernels. | |
Args: | |
kernel_size (int): | |
sigma_x_range (tuple): [0.6, 5] | |
sigma_y_range (tuple): [0.6, 5] | |
rotation range (tuple): [-math.pi, math.pi] | |
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None | |
Returns: | |
kernel (ndarray): | |
""" | |
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' | |
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' | |
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' | |
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' | |
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) | |
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) | |
if strict: | |
sigma_max = np.max([sigma_x, sigma_y]) | |
sigma_min = np.min([sigma_x, sigma_y]) | |
sigma_x, sigma_y = sigma_max, sigma_min | |
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) | |
kernel = bivariate_anisotropic_Gaussian(kernel_size, sigma_x, sigma_y, | |
rotation) | |
# add multiplicative noise | |
if noise_range is not None: | |
assert noise_range[0] < noise_range[1], 'Wrong noise range.' | |
noise = np.random.uniform( | |
noise_range[0], noise_range[1], size=kernel.shape) | |
kernel = kernel * noise | |
kernel = kernel / np.sum(kernel) | |
if strict: | |
return kernel, sigma_x, sigma_y, rotation | |
else: | |
return kernel | |
def random_bivariate_isotropic_Gaussian(kernel_size, | |
sigma_range, | |
noise_range=None, | |
strict=False): | |
"""Randomly generate bivariate isotropic Gaussian kernels. | |
Args: | |
kernel_size (int): | |
sigma_range (tuple): [0.6, 5] | |
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None | |
Returns: | |
kernel (ndarray): | |
""" | |
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' | |
assert sigma_range[0] < sigma_range[1], 'Wrong sigma_x_range.' | |
sigma = np.random.uniform(sigma_range[0], sigma_range[1]) | |
kernel = bivariate_isotropic_Gaussian(kernel_size, sigma) | |
# add multiplicative noise | |
if noise_range is not None: | |
assert noise_range[0] < noise_range[1], 'Wrong noise range.' | |
noise = np.random.uniform( | |
noise_range[0], noise_range[1], size=kernel.shape) | |
kernel = kernel * noise | |
kernel = kernel / np.sum(kernel) | |
if strict: | |
return kernel, sigma | |
else: | |
return kernel | |
def random_bivariate_generalized_Gaussian(kernel_size, | |
sigma_x_range, | |
sigma_y_range, | |
rotation_range, | |
beta_range, | |
noise_range=None, | |
strict=False): | |
"""Randomly generate bivariate generalized Gaussian kernels. | |
Args: | |
kernel_size (int): | |
sigma_x_range (tuple): [0.6, 5] | |
sigma_y_range (tuple): [0.6, 5] | |
rotation range (tuple): [-math.pi, math.pi] | |
beta_range (tuple): [0.5, 8] | |
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None | |
Returns: | |
kernel (ndarray): | |
""" | |
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' | |
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' | |
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' | |
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' | |
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) | |
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) | |
if strict: | |
sigma_max = np.max([sigma_x, sigma_y]) | |
sigma_min = np.min([sigma_x, sigma_y]) | |
sigma_x, sigma_y = sigma_max, sigma_min | |
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) | |
if np.random.uniform() < 0.5: | |
beta = np.random.uniform(beta_range[0], 1) | |
else: | |
beta = np.random.uniform(1, beta_range[1]) | |
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, | |
rotation, beta) | |
# add multiplicative noise | |
if noise_range is not None: | |
assert noise_range[0] < noise_range[1], 'Wrong noise range.' | |
noise = np.random.uniform( | |
noise_range[0], noise_range[1], size=kernel.shape) | |
kernel = kernel * noise | |
kernel = kernel / np.sum(kernel) | |
if strict: | |
return kernel, sigma_x, sigma_y, rotation, beta | |
else: | |
return kernel | |
def random_bivariate_plateau_type1(kernel_size, | |
sigma_x_range, | |
sigma_y_range, | |
rotation_range, | |
beta_range, | |
noise_range=None, | |
strict=False): | |
"""Randomly generate bivariate plateau type1 kernels. | |
Args: | |
kernel_size (int): | |
sigma_x_range (tuple): [0.6, 5] | |
sigma_y_range (tuple): [0.6, 5] | |
rotation range (tuple): [-math.pi/2, math.pi/2] | |
beta_range (tuple): [1, 4] | |
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None | |
Returns: | |
kernel (ndarray): | |
""" | |
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' | |
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' | |
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' | |
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' | |
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) | |
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) | |
if strict: | |
sigma_max = np.max([sigma_x, sigma_y]) | |
sigma_min = np.min([sigma_x, sigma_y]) | |
sigma_x, sigma_y = sigma_max, sigma_min | |
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) | |
if np.random.uniform() < 0.5: | |
beta = np.random.uniform(beta_range[0], 1) | |
else: | |
beta = np.random.uniform(1, beta_range[1]) | |
kernel = bivariate_plateau_type1(kernel_size, sigma_x, sigma_y, rotation, | |
beta) | |
# add multiplicative noise | |
if noise_range is not None: | |
assert noise_range[0] < noise_range[1], 'Wrong noise range.' | |
noise = np.random.uniform( | |
noise_range[0], noise_range[1], size=kernel.shape) | |
kernel = kernel * noise | |
kernel = kernel / np.sum(kernel) | |
if strict: | |
return kernel, sigma_x, sigma_y, rotation, beta | |
else: | |
return kernel | |
def random_bivariate_plateau_type1_iso(kernel_size, | |
sigma_range, | |
beta_range, | |
noise_range=None, | |
strict=False): | |
"""Randomly generate bivariate plateau type1 kernels (iso). | |
Args: | |
kernel_size (int): | |
sigma_range (tuple): [0.6, 5] | |
beta_range (tuple): [1, 4] | |
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None | |
Returns: | |
kernel (ndarray): | |
""" | |
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' | |
assert sigma_range[0] < sigma_range[1], 'Wrong sigma_x_range.' | |
sigma = np.random.uniform(sigma_range[0], sigma_range[1]) | |
beta = np.random.uniform(beta_range[0], beta_range[1]) | |
kernel = bivariate_plateau_type1_iso(kernel_size, sigma, beta) | |
# add multiplicative noise | |
if noise_range is not None: | |
assert noise_range[0] < noise_range[1], 'Wrong noise range.' | |
noise = np.random.uniform( | |
noise_range[0], noise_range[1], size=kernel.shape) | |
kernel = kernel * noise | |
kernel = kernel / np.sum(kernel) | |
if strict: | |
return kernel, sigma, beta | |
else: | |
return kernel | |
def random_mixed_kernels(kernel_list, | |
kernel_prob, | |
kernel_size=21, | |
sigma_x_range=[0.6, 5], | |
sigma_y_range=[0.6, 5], | |
rotation_range=[-math.pi, math.pi], | |
beta_range=[0.5, 8], | |
noise_range=None): | |
"""Randomly generate mixed kernels. | |
Args: | |
kernel_list (tuple): a list name of kenrel types, | |
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso', 'plateau_aniso'] | |
kernel_prob (tuple): corresponding kernel probability for each kernel type | |
kernel_size (int): | |
sigma_x_range (tuple): [0.6, 5] | |
sigma_y_range (tuple): [0.6, 5] | |
rotation range (tuple): [-math.pi, math.pi] | |
beta_range (tuple): [0.5, 8] | |
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None | |
Returns: | |
kernel (ndarray): | |
""" | |
kernel_type = random.choices(kernel_list, kernel_prob)[0] | |
if kernel_type == 'iso': | |
kernel = random_bivariate_isotropic_Gaussian( | |
kernel_size, sigma_x_range, noise_range=noise_range) | |
elif kernel_type == 'aniso': | |
kernel = random_bivariate_anisotropic_Gaussian( | |
kernel_size, | |
sigma_x_range, | |
sigma_y_range, | |
rotation_range, | |
noise_range=noise_range) | |
elif kernel_type == 'skew': | |
kernel = random_bivariate_skew_Gaussian_center( | |
kernel_size, | |
sigma_x_range, | |
sigma_y_range, | |
rotation_range, | |
noise_range=noise_range) | |
elif kernel_type == 'generalized': | |
kernel = random_bivariate_generalized_Gaussian( | |
kernel_size, | |
sigma_x_range, | |
sigma_y_range, | |
rotation_range, | |
beta_range, | |
noise_range=noise_range) | |
elif kernel_type == 'plateau_iso': | |
kernel = random_bivariate_plateau_type1_iso( | |
kernel_size, sigma_x_range, beta_range, noise_range=noise_range) | |
elif kernel_type == 'plateau_aniso': | |
kernel = random_bivariate_plateau_type1( | |
kernel_size, | |
sigma_x_range, | |
sigma_y_range, | |
rotation_range, | |
beta_range, | |
noise_range=noise_range) | |
# add multiplicative noise | |
if noise_range is not None: | |
assert noise_range[0] < noise_range[1], 'Wrong noise range.' | |
noise = np.random.uniform( | |
noise_range[0], noise_range[1], size=kernel.shape) | |
kernel = kernel * noise | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def show_one_kernel(): | |
import matplotlib.pyplot as plt | |
kernel_size = 21 | |
# bivariate skew Gaussian | |
D = [[0, 0], [0, 0]] | |
D = [[3 / 4, 0], [0, 0.5]] | |
kernel = bivariate_skew_Gaussian_center(kernel_size, 2, 4, -math.pi / 4, D) | |
# bivariate anisotropic Gaussian | |
kernel = bivariate_anisotropic_Gaussian(kernel_size, 2, 4, -math.pi / 4) | |
# bivariate anisotropic Gaussian | |
kernel = bivariate_isotropic_Gaussian(kernel_size, 1) | |
# bivariate generalized Gaussian | |
kernel = bivariate_generalized_Gaussian( | |
kernel_size, 2, 4, -math.pi / 4, beta=4) | |
delta_h, delta_w = mass_center_shift(kernel_size, kernel) | |
print(delta_h, delta_w) | |
fig, axs = plt.subplots(nrows=2, ncols=2) | |
# axs.set_axis_off() | |
ax = axs[0][0] | |
im = ax.matshow(kernel, cmap='jet', origin='upper') | |
fig.colorbar(im, ax=ax) | |
# image | |
ax = axs[0][1] | |
kernel_vis = kernel - np.min(kernel) | |
kernel_vis = kernel_vis / np.max(kernel_vis) * 255. | |
ax.imshow(kernel_vis, interpolation='nearest') | |
_, xx, yy = mesh_grid(kernel_size) | |
# contour | |
ax = axs[1][0] | |
CS = ax.contour(xx, yy, kernel, origin='upper') | |
ax.clabel(CS, inline=1, fontsize=3) | |
# contourf | |
ax = axs[1][1] | |
kernel = kernel / np.max(kernel) | |
p = ax.contourf( | |
xx, yy, kernel, origin='upper', levels=np.linspace(-0.05, 1.05, 10)) | |
fig.colorbar(p) | |
plt.show() | |
def show_plateau_kernel(): | |
import matplotlib.pyplot as plt | |
kernel_size = 21 | |
kernel = plateau_type1(kernel_size, 2, 4, -math.pi / 8, 2, grid=None) | |
kernel_norm = bivariate_isotropic_Gaussian(kernel_size, 5) | |
kernel_gau = bivariate_generalized_Gaussian( | |
kernel_size, 2, 4, -math.pi / 8, 2, grid=None) | |
delta_h, delta_w = mass_center_shift(kernel_size, kernel) | |
print(delta_h, delta_w) | |
# kernel_slice = kernel[10, :] | |
# kernel_gau_slice = kernel_gau[10, :] | |
# kernel_norm_slice = kernel_norm[10, :] | |
# fig, ax = plt.subplots() | |
# t = list(range(1, 22)) | |
# ax.plot(t, kernel_gau_slice) | |
# ax.plot(t, kernel_slice) | |
# ax.plot(t, kernel_norm_slice) | |
# t = np.arange(0, 10, 0.1) | |
# y = np.exp(-0.5 * t) | |
# y2 = np.reciprocal(1 + t) | |
# print(t.shape) | |
# print(y.shape) | |
# ax.plot(t, y) | |
# ax.plot(t, y2) | |
# plt.show() | |
fig, axs = plt.subplots(nrows=2, ncols=2) | |
# axs.set_axis_off() | |
ax = axs[0][0] | |
im = ax.matshow(kernel, cmap='jet', origin='upper') | |
fig.colorbar(im, ax=ax) | |
# image | |
ax = axs[0][1] | |
kernel_vis = kernel - np.min(kernel) | |
kernel_vis = kernel_vis / np.max(kernel_vis) * 255. | |
ax.imshow(kernel_vis, interpolation='nearest') | |
_, xx, yy = mesh_grid(kernel_size) | |
# contour | |
ax = axs[1][0] | |
CS = ax.contour(xx, yy, kernel, origin='upper') | |
ax.clabel(CS, inline=1, fontsize=3) | |
# contourf | |
ax = axs[1][1] | |
kernel = kernel / np.max(kernel) | |
p = ax.contourf( | |
xx, yy, kernel, origin='upper', levels=np.linspace(-0.05, 1.05, 10)) | |
fig.colorbar(p) | |
plt.show() | |