Spaces:
Runtime error
Runtime error
import math | |
import lpips | |
import torch | |
from torch import autograd as autograd | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from basicsr.archs.vgg_arch import VGGFeatureExtractor | |
from basicsr.utils.registry import LOSS_REGISTRY | |
from .loss_util import weighted_loss | |
_reduction_modes = ['none', 'mean', 'sum'] | |
def l1_loss(pred, target): | |
return F.l1_loss(pred, target, reduction='none') | |
def mse_loss(pred, target): | |
return F.mse_loss(pred, target, reduction='none') | |
def charbonnier_loss(pred, target, eps=1e-12): | |
return torch.sqrt((pred - target)**2 + eps) | |
class L1Loss(nn.Module): | |
"""L1 (mean absolute error, MAE) loss. | |
Args: | |
loss_weight (float): Loss weight for L1 loss. Default: 1.0. | |
reduction (str): Specifies the reduction to apply to the output. | |
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
""" | |
def __init__(self, loss_weight=1.0, reduction='mean'): | |
super(L1Loss, self).__init__() | |
if reduction not in ['none', 'mean', 'sum']: | |
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') | |
self.loss_weight = loss_weight | |
self.reduction = reduction | |
def forward(self, pred, target, weight=None, **kwargs): | |
""" | |
Args: | |
pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
weight (Tensor, optional): of shape (N, C, H, W). Element-wise | |
weights. Default: None. | |
""" | |
return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction) | |
class MSELoss(nn.Module): | |
"""MSE (L2) loss. | |
Args: | |
loss_weight (float): Loss weight for MSE loss. Default: 1.0. | |
reduction (str): Specifies the reduction to apply to the output. | |
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
""" | |
def __init__(self, loss_weight=1.0, reduction='mean'): | |
super(MSELoss, self).__init__() | |
if reduction not in ['none', 'mean', 'sum']: | |
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') | |
self.loss_weight = loss_weight | |
self.reduction = reduction | |
def forward(self, pred, target, weight=None, **kwargs): | |
""" | |
Args: | |
pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
weight (Tensor, optional): of shape (N, C, H, W). Element-wise | |
weights. Default: None. | |
""" | |
return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction) | |
class CharbonnierLoss(nn.Module): | |
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable | |
variant of L1Loss). | |
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate | |
Super-Resolution". | |
Args: | |
loss_weight (float): Loss weight for L1 loss. Default: 1.0. | |
reduction (str): Specifies the reduction to apply to the output. | |
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
eps (float): A value used to control the curvature near zero. | |
Default: 1e-12. | |
""" | |
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12): | |
super(CharbonnierLoss, self).__init__() | |
if reduction not in ['none', 'mean', 'sum']: | |
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') | |
self.loss_weight = loss_weight | |
self.reduction = reduction | |
self.eps = eps | |
def forward(self, pred, target, weight=None, **kwargs): | |
""" | |
Args: | |
pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
weight (Tensor, optional): of shape (N, C, H, W). Element-wise | |
weights. Default: None. | |
""" | |
return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction) | |
class WeightedTVLoss(L1Loss): | |
"""Weighted TV loss. | |
Args: | |
loss_weight (float): Loss weight. Default: 1.0. | |
""" | |
def __init__(self, loss_weight=1.0): | |
super(WeightedTVLoss, self).__init__(loss_weight=loss_weight) | |
def forward(self, pred, weight=None): | |
y_diff = super(WeightedTVLoss, self).forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=weight[:, :, :-1, :]) | |
x_diff = super(WeightedTVLoss, self).forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=weight[:, :, :, :-1]) | |
loss = x_diff + y_diff | |
return loss | |
class PerceptualLoss(nn.Module): | |
"""Perceptual loss with commonly used style loss. | |
Args: | |
layer_weights (dict): The weight for each layer of vgg feature. | |
Here is an example: {'conv5_4': 1.}, which means the conv5_4 | |
feature layer (before relu5_4) will be extracted with weight | |
1.0 in calculting losses. | |
vgg_type (str): The type of vgg network used as feature extractor. | |
Default: 'vgg19'. | |
use_input_norm (bool): If True, normalize the input image in vgg. | |
Default: True. | |
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. | |
Default: False. | |
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual | |
loss will be calculated and the loss will multiplied by the | |
weight. Default: 1.0. | |
style_weight (float): If `style_weight > 0`, the style loss will be | |
calculated and the loss will multiplied by the weight. | |
Default: 0. | |
criterion (str): Criterion used for perceptual loss. Default: 'l1'. | |
""" | |
def __init__(self, | |
layer_weights, | |
vgg_type='vgg19', | |
use_input_norm=True, | |
range_norm=False, | |
perceptual_weight=1.0, | |
style_weight=0., | |
criterion='l1'): | |
super(PerceptualLoss, self).__init__() | |
self.perceptual_weight = perceptual_weight | |
self.style_weight = style_weight | |
self.layer_weights = layer_weights | |
self.vgg = VGGFeatureExtractor( | |
layer_name_list=list(layer_weights.keys()), | |
vgg_type=vgg_type, | |
use_input_norm=use_input_norm, | |
range_norm=range_norm) | |
self.criterion_type = criterion | |
if self.criterion_type == 'l1': | |
self.criterion = torch.nn.L1Loss() | |
elif self.criterion_type == 'l2': | |
self.criterion = torch.nn.L2loss() | |
elif self.criterion_type == 'mse': | |
self.criterion = torch.nn.MSELoss(reduction='mean') | |
elif self.criterion_type == 'fro': | |
self.criterion = None | |
else: | |
raise NotImplementedError(f'{criterion} criterion has not been supported.') | |
def forward(self, x, gt): | |
"""Forward function. | |
Args: | |
x (Tensor): Input tensor with shape (n, c, h, w). | |
gt (Tensor): Ground-truth tensor with shape (n, c, h, w). | |
Returns: | |
Tensor: Forward results. | |
""" | |
# extract vgg features | |
x_features = self.vgg(x) | |
gt_features = self.vgg(gt.detach()) | |
# calculate perceptual loss | |
if self.perceptual_weight > 0: | |
percep_loss = 0 | |
for k in x_features.keys(): | |
if self.criterion_type == 'fro': | |
percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k] | |
else: | |
percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] | |
percep_loss *= self.perceptual_weight | |
else: | |
percep_loss = None | |
# calculate style loss | |
if self.style_weight > 0: | |
style_loss = 0 | |
for k in x_features.keys(): | |
if self.criterion_type == 'fro': | |
style_loss += torch.norm( | |
self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k] | |
else: | |
style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat( | |
gt_features[k])) * self.layer_weights[k] | |
style_loss *= self.style_weight | |
else: | |
style_loss = None | |
return percep_loss, style_loss | |
def _gram_mat(self, x): | |
"""Calculate Gram matrix. | |
Args: | |
x (torch.Tensor): Tensor with shape of (n, c, h, w). | |
Returns: | |
torch.Tensor: Gram matrix. | |
""" | |
n, c, h, w = x.size() | |
features = x.view(n, c, w * h) | |
features_t = features.transpose(1, 2) | |
gram = features.bmm(features_t) / (c * h * w) | |
return gram | |
class LPIPSLoss(nn.Module): | |
def __init__(self, | |
loss_weight=1.0, | |
use_input_norm=True, | |
range_norm=False,): | |
super(LPIPSLoss, self).__init__() | |
self.perceptual = lpips.LPIPS(net="vgg", spatial=False).eval() | |
self.loss_weight = loss_weight | |
self.use_input_norm = use_input_norm | |
self.range_norm = range_norm | |
if self.use_input_norm: | |
# the mean is for image with range [0, 1] | |
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) | |
# the std is for image with range [0, 1] | |
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) | |
def forward(self, pred, target): | |
if self.range_norm: | |
pred = (pred + 1) / 2 | |
target = (target + 1) / 2 | |
if self.use_input_norm: | |
pred = (pred - self.mean) / self.std | |
target = (target - self.mean) / self.std | |
lpips_loss = self.perceptual(target.contiguous(), pred.contiguous()) | |
return self.loss_weight * lpips_loss.mean() | |
class GANLoss(nn.Module): | |
"""Define GAN loss. | |
Args: | |
gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'. | |
real_label_val (float): The value for real label. Default: 1.0. | |
fake_label_val (float): The value for fake label. Default: 0.0. | |
loss_weight (float): Loss weight. Default: 1.0. | |
Note that loss_weight is only for generators; and it is always 1.0 | |
for discriminators. | |
""" | |
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0): | |
super(GANLoss, self).__init__() | |
self.gan_type = gan_type | |
self.loss_weight = loss_weight | |
self.real_label_val = real_label_val | |
self.fake_label_val = fake_label_val | |
if self.gan_type == 'vanilla': | |
self.loss = nn.BCEWithLogitsLoss() | |
elif self.gan_type == 'lsgan': | |
self.loss = nn.MSELoss() | |
elif self.gan_type == 'wgan': | |
self.loss = self._wgan_loss | |
elif self.gan_type == 'wgan_softplus': | |
self.loss = self._wgan_softplus_loss | |
elif self.gan_type == 'hinge': | |
self.loss = nn.ReLU() | |
else: | |
raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.') | |
def _wgan_loss(self, input, target): | |
"""wgan loss. | |
Args: | |
input (Tensor): Input tensor. | |
target (bool): Target label. | |
Returns: | |
Tensor: wgan loss. | |
""" | |
return -input.mean() if target else input.mean() | |
def _wgan_softplus_loss(self, input, target): | |
"""wgan loss with soft plus. softplus is a smooth approximation to the | |
ReLU function. | |
In StyleGAN2, it is called: | |
Logistic loss for discriminator; | |
Non-saturating loss for generator. | |
Args: | |
input (Tensor): Input tensor. | |
target (bool): Target label. | |
Returns: | |
Tensor: wgan loss. | |
""" | |
return F.softplus(-input).mean() if target else F.softplus(input).mean() | |
def get_target_label(self, input, target_is_real): | |
"""Get target label. | |
Args: | |
input (Tensor): Input tensor. | |
target_is_real (bool): Whether the target is real or fake. | |
Returns: | |
(bool | Tensor): Target tensor. Return bool for wgan, otherwise, | |
return Tensor. | |
""" | |
if self.gan_type in ['wgan', 'wgan_softplus']: | |
return target_is_real | |
target_val = (self.real_label_val if target_is_real else self.fake_label_val) | |
return input.new_ones(input.size()) * target_val | |
def forward(self, input, target_is_real, is_disc=False): | |
""" | |
Args: | |
input (Tensor): The input for the loss module, i.e., the network | |
prediction. | |
target_is_real (bool): Whether the targe is real or fake. | |
is_disc (bool): Whether the loss for discriminators or not. | |
Default: False. | |
Returns: | |
Tensor: GAN loss value. | |
""" | |
if self.gan_type == 'hinge': | |
if is_disc: # for discriminators in hinge-gan | |
input = -input if target_is_real else input | |
loss = self.loss(1 + input).mean() | |
else: # for generators in hinge-gan | |
loss = -input.mean() | |
else: # other gan types | |
target_label = self.get_target_label(input, target_is_real) | |
loss = self.loss(input, target_label) | |
# loss_weight is always 1.0 for discriminators | |
return loss if is_disc else loss * self.loss_weight | |
def r1_penalty(real_pred, real_img): | |
"""R1 regularization for discriminator. The core idea is to | |
penalize the gradient on real data alone: when the | |
generator distribution produces the true data distribution | |
and the discriminator is equal to 0 on the data manifold, the | |
gradient penalty ensures that the discriminator cannot create | |
a non-zero gradient orthogonal to the data manifold without | |
suffering a loss in the GAN game. | |
Ref: | |
Eq. 9 in Which training methods for GANs do actually converge. | |
""" | |
grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0] | |
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean() | |
return grad_penalty | |
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01): | |
noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3]) | |
grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0] | |
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1)) | |
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length) | |
path_penalty = (path_lengths - path_mean).pow(2).mean() | |
return path_penalty, path_lengths.detach().mean(), path_mean.detach() | |
def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None): | |
"""Calculate gradient penalty for wgan-gp. | |
Args: | |
discriminator (nn.Module): Network for the discriminator. | |
real_data (Tensor): Real input data. | |
fake_data (Tensor): Fake input data. | |
weight (Tensor): Weight tensor. Default: None. | |
Returns: | |
Tensor: A tensor for gradient penalty. | |
""" | |
batch_size = real_data.size(0) | |
alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1)) | |
# interpolate between real_data and fake_data | |
interpolates = alpha * real_data + (1. - alpha) * fake_data | |
interpolates = autograd.Variable(interpolates, requires_grad=True) | |
disc_interpolates = discriminator(interpolates) | |
gradients = autograd.grad( | |
outputs=disc_interpolates, | |
inputs=interpolates, | |
grad_outputs=torch.ones_like(disc_interpolates), | |
create_graph=True, | |
retain_graph=True, | |
only_inputs=True)[0] | |
if weight is not None: | |
gradients = gradients * weight | |
gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean() | |
if weight is not None: | |
gradients_penalty /= torch.mean(weight) | |
return gradients_penalty | |