Spaces:
Runtime error
Runtime error
import torch | |
from collections import OrderedDict | |
from os import path as osp | |
from tqdm import tqdm | |
from basicsr.archs import build_network | |
from basicsr.losses import build_loss | |
from basicsr.metrics import calculate_metric | |
from basicsr.utils import get_root_logger, imwrite, tensor2img | |
from basicsr.utils.registry import MODEL_REGISTRY | |
import torch.nn.functional as F | |
from .sr_model import SRModel | |
class CodeFormerModel(SRModel): | |
def feed_data(self, data): | |
self.gt = data['gt'].to(self.device) | |
self.input = data['in'].to(self.device) | |
self.b = self.gt.shape[0] | |
if 'latent_gt' in data: | |
self.idx_gt = data['latent_gt'].to(self.device) | |
self.idx_gt = self.idx_gt.view(self.b, -1) | |
else: | |
self.idx_gt = None | |
def init_training_settings(self): | |
logger = get_root_logger() | |
train_opt = self.opt['train'] | |
self.ema_decay = train_opt.get('ema_decay', 0) | |
if self.ema_decay > 0: | |
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}') | |
# define network net_g with Exponential Moving Average (EMA) | |
# net_g_ema is used only for testing on one GPU and saving | |
# There is no need to wrap with DistributedDataParallel | |
self.net_g_ema = build_network(self.opt['network_g']).to(self.device) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_g', None) | |
if load_path is not None: | |
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema') | |
else: | |
self.model_ema(0) # copy net_g weight | |
self.net_g_ema.eval() | |
if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None: | |
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device) | |
self.hq_vqgan_fix.eval() | |
self.generate_idx_gt = True | |
for param in self.hq_vqgan_fix.parameters(): | |
param.requires_grad = False | |
else: | |
self.generate_idx_gt = False | |
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True) | |
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0) | |
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True) | |
self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5) | |
self.fidelity_weight = train_opt.get('fidelity_weight', 1.0) | |
self.scale_adaptive_gan_weight = train_opt.get('scale_adaptive_gan_weight', 0.8) | |
self.net_g.train() | |
# define network net_d | |
if self.fidelity_weight > 0: | |
self.net_d = build_network(self.opt['network_d']) | |
self.net_d = self.model_to_device(self.net_d) | |
self.print_network(self.net_d) | |
# load pretrained models | |
load_path = self.opt['path'].get('pretrain_network_d', None) | |
if load_path is not None: | |
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True)) | |
self.net_d.train() | |
# define losses | |
if train_opt.get('pixel_opt'): | |
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device) | |
else: | |
self.cri_pix = None | |
if train_opt.get('perceptual_opt'): | |
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device) | |
else: | |
self.cri_perceptual = None | |
if train_opt.get('gan_opt'): | |
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) | |
self.fix_generator = train_opt.get('fix_generator', True) | |
logger.info(f'fix_generator: {self.fix_generator}') | |
self.net_g_start_iter = train_opt.get('net_g_start_iter', 0) | |
self.net_d_iters = train_opt.get('net_d_iters', 1) | |
self.net_d_start_iter = train_opt.get('net_d_start_iter', 0) | |
# set up optimizers and schedulers | |
self.setup_optimizers() | |
self.setup_schedulers() | |
def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max): | |
recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4) | |
d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach() | |
return d_weight | |
def setup_optimizers(self): | |
train_opt = self.opt['train'] | |
# optimizer g | |
optim_params_g = [] | |
for k, v in self.net_g.named_parameters(): | |
if v.requires_grad: | |
optim_params_g.append(v) | |
else: | |
logger = get_root_logger() | |
logger.warning(f'Params {k} will not be optimized.') | |
optim_type = train_opt['optim_g'].pop('type') | |
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g']) | |
self.optimizers.append(self.optimizer_g) | |
# optimizer d | |
if self.fidelity_weight > 0: | |
optim_type = train_opt['optim_d'].pop('type') | |
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d']) | |
self.optimizers.append(self.optimizer_d) | |
def gray_resize_for_identity(self, out, size=128): | |
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :]) | |
out_gray = out_gray.unsqueeze(1) | |
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False) | |
return out_gray | |
def optimize_parameters(self, current_iter): | |
logger = get_root_logger() | |
# optimize net_g | |
for p in self.net_d.parameters(): | |
p.requires_grad = False | |
self.optimizer_g.zero_grad() | |
if self.generate_idx_gt: | |
x = self.hq_vqgan_fix.encoder(self.gt) | |
output, _, quant_stats = self.hq_vqgan_fix.quantize(x) | |
min_encoding_indices = quant_stats['min_encoding_indices'] | |
self.idx_gt = min_encoding_indices.view(self.b, -1) | |
if self.fidelity_weight > 0: | |
self.output, logits, lq_feat = self.net_g(self.input, w=self.fidelity_weight, detach_16=True) | |
else: | |
logits, lq_feat = self.net_g(self.input, w=0, code_only=True) | |
if self.hq_feat_loss: | |
# quant_feats | |
quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256]) | |
l_g_total = 0 | |
loss_dict = OrderedDict() | |
if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter: | |
# hq_feat_loss | |
if self.hq_feat_loss: # codebook loss | |
l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight | |
l_g_total += l_feat_encoder | |
loss_dict['l_feat_encoder'] = l_feat_encoder | |
# cross_entropy_loss | |
if self.cross_entropy_loss: | |
# b(hw)n -> bn(hw) | |
cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight | |
l_g_total += cross_entropy_loss | |
loss_dict['cross_entropy_loss'] = cross_entropy_loss | |
if self.fidelity_weight > 0: # when fidelity_weight == 0 don't need image-level loss | |
# pixel loss | |
if self.cri_pix: | |
l_g_pix = self.cri_pix(self.output, self.gt) | |
l_g_total += l_g_pix | |
loss_dict['l_g_pix'] = l_g_pix | |
# perceptual loss | |
if self.cri_perceptual: | |
l_g_percep = self.cri_perceptual(self.output, self.gt) | |
l_g_total += l_g_percep | |
loss_dict['l_g_percep'] = l_g_percep | |
# gan loss | |
if current_iter > self.net_d_start_iter: | |
fake_g_pred = self.net_d(self.output) | |
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False) | |
recon_loss = l_g_pix + l_g_percep | |
if not self.fix_generator: | |
last_layer = self.net_g.module.generator.blocks[-1].weight | |
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0) | |
else: | |
largest_fuse_size = self.opt['network_g']['connect_list'][-1] | |
last_layer = self.net_g.module.fuse_convs_dict[largest_fuse_size].shift[-1].weight | |
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0) | |
d_weight *= self.scale_adaptive_gan_weight # 0.8 | |
loss_dict['d_weight'] = d_weight | |
l_g_total += d_weight * l_g_gan | |
loss_dict['l_g_gan'] = d_weight * l_g_gan | |
l_g_total.backward() | |
self.optimizer_g.step() | |
if self.ema_decay > 0: | |
self.model_ema(decay=self.ema_decay) | |
# optimize net_d | |
if current_iter > self.net_d_start_iter and self.fidelity_weight > 0: | |
for p in self.net_d.parameters(): | |
p.requires_grad = True | |
self.optimizer_d.zero_grad() | |
# real | |
real_d_pred = self.net_d(self.gt) | |
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True) | |
loss_dict['l_d_real'] = l_d_real | |
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) | |
l_d_real.backward() | |
# fake | |
fake_d_pred = self.net_d(self.output.detach()) | |
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True) | |
loss_dict['l_d_fake'] = l_d_fake | |
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) | |
l_d_fake.backward() | |
self.optimizer_d.step() | |
self.log_dict = self.reduce_loss_dict(loss_dict) | |
def test(self): | |
with torch.no_grad(): | |
if hasattr(self, 'net_g_ema'): | |
self.net_g_ema.eval() | |
self.output, _, _ = self.net_g_ema(self.input, w=self.fidelity_weight) | |
else: | |
logger = get_root_logger() | |
logger.warning('Do not have self.net_g_ema, use self.net_g.') | |
self.net_g.eval() | |
self.output, _, _ = self.net_g(self.input, w=self.fidelity_weight) | |
self.net_g.train() | |
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
if self.opt['rank'] == 0: | |
self.nondist_validation(dataloader, current_iter, tb_logger, save_img) | |
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
dataset_name = dataloader.dataset.opt['name'] | |
with_metrics = self.opt['val'].get('metrics') is not None | |
if with_metrics: | |
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()} | |
pbar = tqdm(total=len(dataloader), unit='image') | |
for idx, val_data in enumerate(dataloader): | |
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] | |
self.feed_data(val_data) | |
self.test() | |
visuals = self.get_current_visuals() | |
sr_img = tensor2img([visuals['result']]) | |
if 'gt' in visuals: | |
gt_img = tensor2img([visuals['gt']]) | |
del self.gt | |
# tentative for out of GPU memory | |
del self.lq | |
del self.output | |
torch.cuda.empty_cache() | |
if save_img: | |
if self.opt['is_train']: | |
save_img_path = osp.join(self.opt['path']['visualization'], img_name, | |
f'{img_name}_{current_iter}.png') | |
else: | |
if self.opt['val']['suffix']: | |
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, | |
f'{img_name}_{self.opt["val"]["suffix"]}.png') | |
else: | |
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, | |
f'{img_name}_{self.opt["name"]}.png') | |
imwrite(sr_img, save_img_path) | |
if with_metrics: | |
# calculate metrics | |
for name, opt_ in self.opt['val']['metrics'].items(): | |
metric_data = dict(img1=sr_img, img2=gt_img) | |
self.metric_results[name] += calculate_metric(metric_data, opt_) | |
pbar.update(1) | |
pbar.set_description(f'Test {img_name}') | |
pbar.close() | |
if with_metrics: | |
for metric in self.metric_results.keys(): | |
self.metric_results[metric] /= (idx + 1) | |
self._log_validation_metric_values(current_iter, dataset_name, tb_logger) | |
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger): | |
log_str = f'Validation {dataset_name}\n' | |
for metric, value in self.metric_results.items(): | |
log_str += f'\t # {metric}: {value:.4f}\n' | |
logger = get_root_logger() | |
logger.info(log_str) | |
if tb_logger: | |
for metric, value in self.metric_results.items(): | |
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter) | |
def get_current_visuals(self): | |
out_dict = OrderedDict() | |
out_dict['gt'] = self.gt.detach().cpu() | |
out_dict['result'] = self.output.detach().cpu() | |
return out_dict | |
def save(self, epoch, current_iter): | |
if self.ema_decay > 0: | |
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema']) | |
else: | |
self.save_network(self.net_g, 'net_g', current_iter) | |
if self.fidelity_weight > 0: | |
self.save_network(self.net_d, 'net_d', current_iter) | |
self.save_training_state(epoch, current_iter) | |