Spaces:
Runtime error
Runtime error
import cv2 | |
import copy | |
import re | |
import torch | |
import numpy as np | |
from pathlib import Path | |
from facelib.detection.yolov5face.models.yolo import Model | |
from facelib.detection.yolov5face.utils.datasets import letterbox | |
from facelib.detection.yolov5face.utils.general import ( | |
check_img_size, | |
non_max_suppression_face, | |
scale_coords, | |
scale_coords_landmarks, | |
) | |
# IS_HIGH_VERSION = tuple(map(int, torch.__version__.split('+')[0].split('.')[:2])) >= (1, 9) | |
IS_HIGH_VERSION = [int(m) for m in list(re.findall(r"^([0-9]+)\.([0-9]+)\.([0-9]+)([^0-9][a-zA-Z0-9]*)?(\+git.*)?$",\ | |
torch.__version__)[0][:3])] >= [1, 9, 0] | |
def isListempty(inList): | |
if isinstance(inList, list): # Is a list | |
return all(map(isListempty, inList)) | |
return False # Not a list | |
class YoloDetector: | |
def __init__( | |
self, | |
config_name, | |
min_face=10, | |
target_size=None, | |
device='cuda', | |
): | |
""" | |
config_name: name of .yaml config with network configuration from models/ folder. | |
min_face : minimal face size in pixels. | |
target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080. | |
None for original resolution. | |
""" | |
self._class_path = Path(__file__).parent.absolute() | |
self.target_size = target_size | |
self.min_face = min_face | |
self.detector = Model(cfg=config_name) | |
self.device = device | |
def _preprocess(self, imgs): | |
""" | |
Preprocessing image before passing through the network. Resize and conversion to torch tensor. | |
""" | |
pp_imgs = [] | |
for img in imgs: | |
h0, w0 = img.shape[:2] # orig hw | |
if self.target_size: | |
r = self.target_size / min(h0, w0) # resize image to img_size | |
if r < 1: | |
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR) | |
imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size | |
img = letterbox(img, new_shape=imgsz)[0] | |
pp_imgs.append(img) | |
pp_imgs = np.array(pp_imgs) | |
pp_imgs = pp_imgs.transpose(0, 3, 1, 2) | |
pp_imgs = torch.from_numpy(pp_imgs).to(self.device) | |
pp_imgs = pp_imgs.float() # uint8 to fp16/32 | |
return pp_imgs / 255.0 # 0 - 255 to 0.0 - 1.0 | |
def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres): | |
""" | |
Postprocessing of raw pytorch model output. | |
Returns: | |
bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2. | |
points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners). | |
""" | |
bboxes = [[] for _ in range(len(origimgs))] | |
landmarks = [[] for _ in range(len(origimgs))] | |
pred = non_max_suppression_face(pred, conf_thres, iou_thres) | |
for image_id, origimg in enumerate(origimgs): | |
img_shape = origimg.shape | |
image_height, image_width = img_shape[:2] | |
gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh | |
gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks | |
det = pred[image_id].cpu() | |
scale_coords(imgs[image_id].shape[1:], det[:, :4], img_shape).round() | |
scale_coords_landmarks(imgs[image_id].shape[1:], det[:, 5:15], img_shape).round() | |
for j in range(det.size()[0]): | |
box = (det[j, :4].view(1, 4) / gn).view(-1).tolist() | |
box = list( | |
map(int, [box[0] * image_width, box[1] * image_height, box[2] * image_width, box[3] * image_height]) | |
) | |
if box[3] - box[1] < self.min_face: | |
continue | |
lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist() | |
lm = list(map(int, [i * image_width if j % 2 == 0 else i * image_height for j, i in enumerate(lm)])) | |
lm = [lm[i : i + 2] for i in range(0, len(lm), 2)] | |
bboxes[image_id].append(box) | |
landmarks[image_id].append(lm) | |
return bboxes, landmarks | |
def detect_faces(self, imgs, conf_thres=0.7, iou_thres=0.5): | |
""" | |
Get bbox coordinates and keypoints of faces on original image. | |
Params: | |
imgs: image or list of images to detect faces on with BGR order (convert to RGB order for inference) | |
conf_thres: confidence threshold for each prediction | |
iou_thres: threshold for NMS (filter of intersecting bboxes) | |
Returns: | |
bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2. | |
points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners). | |
""" | |
# Pass input images through face detector | |
images = imgs if isinstance(imgs, list) else [imgs] | |
images = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in images] | |
origimgs = copy.deepcopy(images) | |
images = self._preprocess(images) | |
if IS_HIGH_VERSION: | |
with torch.inference_mode(): # for pytorch>=1.9 | |
pred = self.detector(images)[0] | |
else: | |
with torch.no_grad(): # for pytorch<1.9 | |
pred = self.detector(images)[0] | |
bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres) | |
# return bboxes, points | |
if not isListempty(points): | |
bboxes = np.array(bboxes).reshape(-1,4) | |
points = np.array(points).reshape(-1,10) | |
padding = bboxes[:,0].reshape(-1,1) | |
return np.concatenate((bboxes, padding, points), axis=1) | |
else: | |
return None | |
def __call__(self, *args): | |
return self.predict(*args) | |