import gradio as gr import pandas as pd import joblib import numpy as np from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LogisticRegression # Load the saved full pipeline from the file full_pipeline = joblib.load('pipe.pkl') # Define the predict function def predict(gender, SeniorCitizen, Partner, Dependents, Contract, tenure, MonthlyCharges, TotalCharges, PaymentMethod, PhoneService, MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies, PaperlessBilling): # Create a DataFrame from the input data input_data = pd.DataFrame({ 'gender': [gender] if gender else ['Male'], # Replace None with default value 'SeniorCitizen': [SeniorCitizen] if SeniorCitizen is not None else [0], # Replace None with default value 'Partner': [Partner] if Partner else ['No'], # Replace None with default value 'Dependents': [Dependents] if Dependents else ['No'], # Replace None with default value 'tenure': [tenure] if tenure else [1], # Replace None with default value 'PhoneService': [PhoneService] if PhoneService else ['Yes'], # Replace None with default value 'MultipleLines': [MultipleLines] if MultipleLines else ['No'], # Replace None with default value 'InternetService': [InternetService] if InternetService else ['DSL'], # Replace None with default value 'OnlineSecurity': [OnlineSecurity] if OnlineSecurity else ['No'], # Replace None with default value 'OnlineBackup': [OnlineBackup] if OnlineBackup else ['No'], # Replace None with default value 'DeviceProtection': [DeviceProtection] if DeviceProtection else ['No'], # Replace None with default value 'TechSupport': [TechSupport] if TechSupport else ['No'], # Replace None with default value 'StreamingTV': [StreamingTV] if StreamingTV else ['No'], # Replace None with default value 'StreamingMovies': [StreamingMovies] if StreamingMovies else ['No'], # Replace None with default value 'Contract': [Contract] if Contract else ['Month-to-month'], # Replace None with default value 'PaperlessBilling': [PaperlessBilling] if PaperlessBilling else ['No'], # Replace None with default value 'PaymentMethod': [PaymentMethod] if PaymentMethod else ['Electronic check'], # Replace None with default value 'MonthlyCharges': [MonthlyCharges] if MonthlyCharges else [0.0], # Replace None with default value 'TotalCharges': [TotalCharges] if TotalCharges else [0.0] # Replace None with default value}) # Make predictions using the loaded logistic regression model #predict probabilities predictions = full_pipeline.predict_proba(input_data) #take the index of the maximum probability index=np.argmax(predictions) higher_pred_prob=round((predictions[0][index])*100) #return predictions[0] print(f'[Info] Predicted probabilities{predictions},{full_pipeline.classes_}') if full_pipeline.classes_[index] == "Yes": return f"This Customer is likely to Churn\nWe are {higher_pred_prob}% confident about this prediction" else: return f"This Customer is Not likely to Churn \nWe are {higher_pred_prob}% confident about this prediction" # Setting Gradio App Interface with gr.Blocks(css=".gradio-container {background-color: grey}",theme=gr.themes.Base(primary_hue='blue'),title='Uriel') as demo: gr.Markdown("# Teleco Customer Churn Prediction #\n*This App allows the user to predict whether a customer will churn or not by entering values in the given fields. Any field left blank takes the default value.*") # Receiving ALL Input Data here gr.Markdown("**Demographic Data**") with gr.Row(): gender = gr.Dropdown(label="Gender", choices=["Male", "Female"]) SeniorCitizen = gr.Radio(label="Senior Citizen", choices=[1, 0]) Partner = gr.Radio(label="Partner", choices=["Yes", "No"]) Dependents = gr.Radio(label="Dependents", choices=["Yes", "No"]) gr.Markdown("**Service Length and Charges (USD)**") with gr.Row(): Contract = gr.Dropdown(label="Contract", choices=["Month-to-month", "One year", "Two year"]) tenure = gr.Slider(label="Tenure (months)", minimum=1, step=1, interactive=True) MonthlyCharges = gr.Slider(label="Monthly Charges", step=0.05) TotalCharges = gr.Slider(label="Total Charges", step=0.05) # Phone Service Usage part gr.Markdown("**Phone Service Usage**") with gr.Row(): PhoneService = gr.Radio(label="Phone Service", choices=["Yes", "No"]) MultipleLines = gr.Dropdown(label="Multiple Lines", choices=[ "Yes", "No", "No phone service"]) # Internet Service Usage part gr.Markdown("**Internet Service Usage**") with gr.Row(): InternetService = gr.Dropdown(label="Internet Service", choices=["DSL", "Fiber optic", "No"]) OnlineSecurity = gr.Dropdown(label="Online Security", choices=["Yes", "No", "No internet service"]) OnlineBackup = gr.Dropdown(label="Online Backup", choices=["Yes", "No", "No internet service"]) DeviceProtection = gr.Dropdown(label="Device Protection", choices=["Yes", "No", "No internet service"]) TechSupport = gr.Dropdown(label="Tech Support", choices=["Yes", "No", "No internet service"]) StreamingTV = gr.Dropdown(label="TV Streaming", choices=["Yes", "No", "No internet service"]) StreamingMovies = gr.Dropdown(label="Movie Streaming", choices=["Yes", "No", "No internet service"]) # Billing and Payment part gr.Markdown("**Billing and Payment**") with gr.Row(): PaperlessBilling = gr.Radio( label="Paperless Billing", choices=["Yes", "No"]) PaymentMethod = gr.Dropdown(label="Payment Method", choices=["Electronic check", "Mailed check", "Bank transfer (automatic)", "Credit card (automatic)"]) # Output Prediction output = gr.Text(label="Outcome") submit_button = gr.Button("Predict") submit_button.click(fn= predict, outputs= output, inputs=[gender, SeniorCitizen, Partner, Dependents, Contract, tenure, MonthlyCharges, TotalCharges, PaymentMethod, PhoneService, MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies, PaperlessBilling], ), # Add the reset and flag buttons def clear(): output.value = "" return 'Predicted values have been reset' clear_btn = gr.Button("Reset", variant="primary") clear_btn.click(fn=clear, inputs=None, outputs=output) demo.launch(inbrowser = True) # Make predictions using the loaded logistic regression model predictions = full_pipeline.predict(input_data) #return predictions[0] if predictions[0] == "Yes": return "Churn" else: return "Not Churn" # Setting Gradio App Interface with gr.Blocks(css=".gradio-container {background-color: grey}") as demo: gr.Markdown("# Teleco Customer Churn Prediction #\n*This App allows the user to predict whether a customer will churn or not by entering values in the given fields. Any field left blank takes the default value.*") # Receiving ALL Input Data here gr.Markdown("**Demographic Data**") with gr.Row(): gender = gr.Dropdown(label="Gender", choices=["Male", "Female"]) SeniorCitizen = gr.Radio(label="Senior Citizen", choices=[1, 0]) Partner = gr.Radio(label="Partner", choices=["Yes", "No"]) Dependents = gr.Radio(label="Dependents", choices=["Yes", "No"]) gr.Markdown("**Service Length and Charges (USD)**") with gr.Row(): Contract = gr.Dropdown(label="Contract", choices=["Month-to-month", "One year", "Two year"]) tenure = gr.Slider(label="Tenure (months)", minimum=1, step=1, interactive=True) MonthlyCharges = gr.Slider(label="Monthly Charges", step=0.05) TotalCharges = gr.Slider(label="Total Charges", step=0.05) # Phone Service Usage part gr.Markdown("**Phone Service Usage**") with gr.Row(): PhoneService = gr.Radio(label="Phone Service", choices=["Yes", "No"]) MultipleLines = gr.Dropdown(label="Multiple Lines", choices=[ "Yes", "No", "No phone service"]) # Internet Service Usage part gr.Markdown("**Internet Service Usage**") with gr.Row(): InternetService = gr.Dropdown(label="Internet Service", choices=["DSL", "Fiber optic", "No"]) OnlineSecurity = gr.Dropdown(label="Online Security", choices=["Yes", "No", "No internet service"]) OnlineBackup = gr.Dropdown(label="Online Backup", choices=["Yes", "No", "No internet service"]) DeviceProtection = gr.Dropdown(label="Device Protection", choices=["Yes", "No", "No internet service"]) TechSupport = gr.Dropdown(label="Tech Support", choices=["Yes", "No", "No internet service"]) StreamingTV = gr.Dropdown(label="TV Streaming", choices=["Yes", "No", "No internet service"]) StreamingMovies = gr.Dropdown(label="Movie Streaming", choices=["Yes", "No", "No internet service"]) # Billing and Payment part gr.Markdown("**Billing and Payment**") with gr.Row(): PaperlessBilling = gr.Radio( label="Paperless Billing", choices=["Yes", "No"]) PaymentMethod = gr.Dropdown(label="Payment Method", choices=["Electronic check", "Mailed check", "Bank transfer (automatic)", "Credit card (automatic)"]) # Output Prediction output = gr.Text(label="Outcome") submit_button = gr.Button("Predict") submit_button.click(fn= predict, outputs= output, inputs=[gender, SeniorCitizen, Partner, Dependents, Contract, tenure, MonthlyCharges, TotalCharges, PaymentMethod, PhoneService, MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies, PaperlessBilling], ), # Add the reset and flag buttons def clear(): output.value = "" return None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None clear_btn = gr.Button("Reset", variant="primary") clear_btn.click(fn=clear, inputs=None, outputs=output) demo.launch(inbrowser = True)