File size: 4,580 Bytes
6ef620e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from typing import Any

import torch

from .scheduler_utils import SNR_to_betas, compute_snr


class ShiftSNRScheduler:
    def __init__(
        self,
        noise_scheduler: Any,
        timesteps: Any,
        shift_scale: float,
        scheduler_class: Any,
    ):
        self.noise_scheduler = noise_scheduler
        self.timesteps = timesteps
        self.shift_scale = shift_scale
        self.scheduler_class = scheduler_class

    def _get_shift_scheduler(self):
        """
        Prepare scheduler for shifted betas.

        :return: A scheduler object configured with shifted betas
        """
        snr = compute_snr(self.timesteps, self.noise_scheduler)
        shifted_betas = SNR_to_betas(snr / self.shift_scale)

        return self.scheduler_class.from_config(
            self.noise_scheduler.config, trained_betas=shifted_betas.numpy()
        )

    def _get_interpolated_shift_scheduler(self):
        """
        Prepare scheduler for shifted betas and interpolate with the original betas in log space.

        :return: A scheduler object configured with interpolated shifted betas
        """
        snr = compute_snr(self.timesteps, self.noise_scheduler)
        shifted_snr = snr / self.shift_scale

        weighting = self.timesteps.float() / (
            self.noise_scheduler.config.num_train_timesteps - 1
        )
        interpolated_snr = torch.exp(
            torch.log(snr) * (1 - weighting) + torch.log(shifted_snr) * weighting
        )

        shifted_betas = SNR_to_betas(interpolated_snr)

        return self.scheduler_class.from_config(
            self.noise_scheduler.config, trained_betas=shifted_betas.numpy()
        )

    @classmethod
    def from_scheduler(
        cls,
        noise_scheduler: Any,
        shift_mode: str = "default",
        timesteps: Any = None,
        shift_scale: float = 1.0,
        scheduler_class: Any = None,
    ):
        # Check input
        if timesteps is None:
            timesteps = torch.arange(0, noise_scheduler.config.num_train_timesteps)
        if scheduler_class is None:
            scheduler_class = noise_scheduler.__class__

        # Create scheduler
        shift_scheduler = cls(
            noise_scheduler=noise_scheduler,
            timesteps=timesteps,
            shift_scale=shift_scale,
            scheduler_class=scheduler_class,
        )

        if shift_mode == "default":
            return shift_scheduler._get_shift_scheduler()
        elif shift_mode == "interpolated":
            return shift_scheduler._get_interpolated_shift_scheduler()
        else:
            raise ValueError(f"Unknown shift_mode: {shift_mode}")


if __name__ == "__main__":
    """
    Compare the alpha values for different noise schedulers.
    """
    import matplotlib.pyplot as plt
    from diffusers import DDPMScheduler

    from .scheduler_utils import compute_alpha

    # Base
    timesteps = torch.arange(0, 1000)
    noise_scheduler_base = DDPMScheduler.from_pretrained(
        "runwayml/stable-diffusion-v1-5", subfolder="scheduler"
    )
    alpha = compute_alpha(timesteps, noise_scheduler_base)
    plt.plot(timesteps.numpy(), alpha.numpy(), label="Base")

    # Kolors
    num_train_timesteps_ = 1100
    timesteps_ = torch.arange(0, num_train_timesteps_)
    noise_kwargs = {"beta_end": 0.014, "num_train_timesteps": num_train_timesteps_}
    noise_scheduler_kolors = DDPMScheduler.from_config(
        noise_scheduler_base.config, **noise_kwargs
    )
    alpha = compute_alpha(timesteps_, noise_scheduler_kolors)
    plt.plot(timesteps_.numpy(), alpha.numpy(), label="Kolors")

    # Shift betas
    shift_scale = 8.0
    noise_scheduler_shift = ShiftSNRScheduler.from_scheduler(
        noise_scheduler_base, shift_mode="default", shift_scale=shift_scale
    )
    alpha = compute_alpha(timesteps, noise_scheduler_shift)
    plt.plot(timesteps.numpy(), alpha.numpy(), label="Shift Noise (scale 8.0)")

    # Shift betas (interpolated)
    noise_scheduler_inter = ShiftSNRScheduler.from_scheduler(
        noise_scheduler_base, shift_mode="interpolated", shift_scale=shift_scale
    )
    alpha = compute_alpha(timesteps, noise_scheduler_inter)
    plt.plot(timesteps.numpy(), alpha.numpy(), label="Interpolated (scale 8.0)")

    # ZeroSNR
    noise_scheduler = DDPMScheduler.from_config(
        noise_scheduler_base.config, rescale_betas_zero_snr=True
    )
    alpha = compute_alpha(timesteps, noise_scheduler)
    plt.plot(timesteps.numpy(), alpha.numpy(), label="ZeroSNR")

    plt.legend()
    plt.grid()
    plt.savefig("check_alpha.png")