File size: 9,201 Bytes
6ef620e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from typing import List, Optional, Tuple

import numpy as np
import torch
from torch.nn import functional as F


def get_position_map_from_depth(depth, mask, intrinsics, extrinsics, image_wh=None):
    """Compute the position map from the depth map and the camera parameters for a batch of views.

    Args:
        depth (torch.Tensor): The depth maps with the shape (B, H, W, 1).
        mask (torch.Tensor): The masks with the shape (B, H, W, 1).
        intrinsics (torch.Tensor): The camera intrinsics matrices with the shape (B, 3, 3).
        extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4).
        image_wh (Tuple[int, int]): The image width and height.

    Returns:
        torch.Tensor: The position maps with the shape (B, H, W, 3).
    """
    if image_wh is None:
        image_wh = depth.shape[2], depth.shape[1]

    B, H, W, _ = depth.shape
    depth = depth.squeeze(-1)

    u_coord, v_coord = torch.meshgrid(
        torch.arange(image_wh[0]), torch.arange(image_wh[1]), indexing="xy"
    )
    u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
    v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)

    # Compute the position map by back-projecting depth pixels to 3D space
    x = (
        (u_coord - intrinsics[:, 0, 2].unsqueeze(-1).unsqueeze(-1))
        * depth
        / intrinsics[:, 0, 0].unsqueeze(-1).unsqueeze(-1)
    )
    y = (
        (v_coord - intrinsics[:, 1, 2].unsqueeze(-1).unsqueeze(-1))
        * depth
        / intrinsics[:, 1, 1].unsqueeze(-1).unsqueeze(-1)
    )
    z = depth

    # Concatenate to form the 3D coordinates in the camera frame
    camera_coords = torch.stack([x, y, z], dim=-1)

    # Apply the extrinsic matrix to get coordinates in the world frame
    coords_homogeneous = torch.nn.functional.pad(
        camera_coords, (0, 1), "constant", 1.0
    )  # Add a homogeneous coordinate
    world_coords = torch.matmul(
        coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2)
    ).view(B, H, W, 4)

    # Apply the mask to the position map
    position_map = world_coords[..., :3] * mask

    return position_map


def get_position_map_from_depth_ortho(
    depth, mask, extrinsics, ortho_scale, image_wh=None
):
    """Compute the position map from the depth map and the camera parameters for a batch of views
    using orthographic projection with a given ortho_scale.

    Args:
        depth (torch.Tensor): The depth maps with the shape (B, H, W, 1).
        mask (torch.Tensor): The masks with the shape (B, H, W, 1).
        extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4).
        ortho_scale (torch.Tensor): The scaling factor for the orthographic projection with the shape (B, 1, 1, 1).
        image_wh (Tuple[int, int]): Optional. The image width and height.

    Returns:
        torch.Tensor: The position maps with the shape (B, H, W, 3).
    """
    if image_wh is None:
        image_wh = depth.shape[2], depth.shape[1]

    B, H, W, _ = depth.shape
    depth = depth.squeeze(-1)

    # Generating grid of coordinates in the image space
    u_coord, v_coord = torch.meshgrid(
        torch.arange(0, image_wh[0]), torch.arange(0, image_wh[1]), indexing="xy"
    )
    u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
    v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)

    # Compute the position map using orthographic projection with ortho_scale
    x = (u_coord - image_wh[0] / 2) / ortho_scale / image_wh[0]
    y = (v_coord - image_wh[1] / 2) / ortho_scale / image_wh[1]
    z = depth

    # Concatenate to form the 3D coordinates in the camera frame
    camera_coords = torch.stack([x, y, z], dim=-1)

    # Apply the extrinsic matrix to get coordinates in the world frame
    coords_homogeneous = torch.nn.functional.pad(
        camera_coords, (0, 1), "constant", 1.0
    )  # Add a homogeneous coordinate
    world_coords = torch.matmul(
        coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2)
    ).view(B, H, W, 4)

    # Apply the mask to the position map
    position_map = world_coords[..., :3] * mask

    return position_map


def get_opencv_from_blender(matrix_world, fov=None, image_size=None):
    # convert matrix_world to opencv format extrinsics
    opencv_world_to_cam = matrix_world.inverse()
    opencv_world_to_cam[1, :] *= -1
    opencv_world_to_cam[2, :] *= -1
    R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3]

    if fov is None:  # orthographic camera
        return R, T

    R, T = R.unsqueeze(0), T.unsqueeze(0)
    # convert fov to opencv format intrinsics
    focal = 1 / np.tan(fov / 2)
    intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32)
    opencv_cam_matrix = (
        torch.from_numpy(intrinsics).unsqueeze(0).float().to(matrix_world.device)
    )
    opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2]).to(
        matrix_world.device
    )
    opencv_cam_matrix[:, [0, 1], [0, 1]] *= image_size / 2

    return R, T, opencv_cam_matrix


def get_ray_directions(
    H: int,
    W: int,
    focal: float,
    principal: Optional[Tuple[float, float]] = None,
    use_pixel_centers: bool = True,
) -> torch.Tensor:
    """
    Get ray directions for all pixels in camera coordinate.
    Args:
        H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
    Outputs:
        directions: (H, W, 3), the direction of the rays in camera coordinate
    """
    pixel_center = 0.5 if use_pixel_centers else 0
    cx, cy = W / 2, H / 2 if principal is None else principal
    i, j = torch.meshgrid(
        torch.arange(W, dtype=torch.float32) + pixel_center,
        torch.arange(H, dtype=torch.float32) + pixel_center,
        indexing="xy",
    )
    directions = torch.stack(
        [(i - cx) / focal, -(j - cy) / focal, -torch.ones_like(i)], -1
    )
    return F.normalize(directions, dim=-1)


def get_rays(
    directions: torch.Tensor, c2w: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Get ray origins and directions from camera coordinates to world coordinates
    Args:
        directions: (H, W, 3) ray directions in camera coordinates
        c2w: (4, 4) camera-to-world transformation matrix
    Outputs:
        rays_o, rays_d: (H, W, 3) ray origins and directions in world coordinates
    """
    # Rotate ray directions from camera coordinate to the world coordinate
    rays_d = directions @ c2w[:3, :3].T
    rays_o = c2w[:3, 3].expand(rays_d.shape)
    return rays_o, rays_d


def compute_plucker_embed(
    c2w: torch.Tensor, image_width: int, image_height: int, focal: float
) -> torch.Tensor:
    """
    Computes Plucker coordinates for a camera.
    Args:
        c2w: (4, 4) camera-to-world transformation matrix
        image_width: Image width
        image_height: Image height
        focal: Focal length of the camera
    Returns:
        plucker: (6, H, W) Plucker embedding
    """
    directions = get_ray_directions(image_height, image_width, focal)
    rays_o, rays_d = get_rays(directions, c2w)
    # Cross product to get Plucker coordinates
    cross = torch.cross(rays_o, rays_d, dim=-1)
    plucker = torch.cat((rays_d, cross), dim=-1)
    return plucker.permute(2, 0, 1)


def get_plucker_embeds_from_cameras(
    c2w: List[torch.Tensor], fov: List[float], image_size: int
) -> torch.Tensor:
    """
    Given lists of camera transformations and fov, returns the batched plucker embeddings.
    Args:
        c2w: list of camera-to-world transformation matrices
        fov: list of field of view values
        image_size: size of the image
    Returns:
        plucker_embeds: (B, 6, H, W) batched plucker embeddings
    """
    plucker_embeds = []
    for cam_matrix, cam_fov in zip(c2w, fov):
        focal = 0.5 * image_size / np.tan(0.5 * cam_fov)
        plucker = compute_plucker_embed(cam_matrix, image_size, image_size, focal)
        plucker_embeds.append(plucker)
    return torch.stack(plucker_embeds)


def get_plucker_embeds_from_cameras_ortho(
    c2w: List[torch.Tensor], ortho_scale: List[float], image_size: int
):
    """
    Given lists of camera transformations and fov, returns the batched plucker embeddings.

    Parameters:
        c2w: list of camera-to-world transformation matrices
        fov: list of field of view values
        image_size: size of the image

    Returns:
        plucker_embeds: plucker embeddings (B, 6, H, W)
    """
    plucker_embeds = []
    # compute pairwise mask and plucker embeddings
    for cam_matrix, scale in zip(c2w, ortho_scale):
        # blender to opencv to pytorch3d
        R, T = get_opencv_from_blender(cam_matrix)
        cam_pos = -R.T @ T
        view_dir = R.T @ torch.tensor([0, 0, 1]).float().to(cam_matrix.device)
        # normalize camera position
        cam_pos = F.normalize(cam_pos, dim=0)
        plucker = torch.concat([view_dir, cam_pos])
        plucker = plucker.unsqueeze(-1).unsqueeze(-1).repeat(1, image_size, image_size)
        plucker_embeds.append(plucker)

    plucker_embeds = torch.stack(plucker_embeds)

    return plucker_embeds