Spaces:
Runtime error
Runtime error
File size: 12,357 Bytes
e20ef71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import inspect
import json
import os
import random
from typing import Literal, cast
import gradio as gr
import torch
from PIL import Image
from gradio.data_classes import InterfaceTypes
from gradio.flagging import CSVLogger
from torchvision import transforms
from transformers import AutoTokenizer, LlamaForCausalLM
from trace_exec import run_program_with_trace, CompileTimeError
from vision_processes import load_models
print("-" * 10, "Loading models...")
load_models()
with open('joint.prompt') as f:
prompt_template = f.read().strip()
INPUT_TYPE = 'image'
OUTPUT_TYPE = 'str'
SIGNATURE = f'def execute_command({INPUT_TYPE}) -> {OUTPUT_TYPE}:'
def generate(model, input_text):
torch.cuda.empty_cache()
print("-" * 10, "Before loading LLM:")
print(torch.cuda.memory_summary())
dtype = os.environ.get("CODELLAMA_DTYPE")
assert dtype in ['bfloat16', '8bit', '4bit', ]
tokenizer = AutoTokenizer.from_pretrained(model)
model = LlamaForCausalLM.from_pretrained(
model,
device_map="auto",
load_in_8bit=dtype == "8bit",
load_in_4bit=dtype == "4bit",
torch_dtype=torch.bfloat16 if dtype == "bfloat16" else None,
)
print("-" * 10, "LLM loaded:")
print(model)
print(torch.cuda.memory_summary())
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
generated_ids = model.generate(
input_ids.to('cuda'), max_new_tokens=256, stop_strings=["\n\n"], do_sample=False, tokenizer=tokenizer
)
generated_ids = generated_ids[0][input_ids.shape[1]:]
text = tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
del model
torch.cuda.empty_cache()
print("-" * 10, "After loading LLM:")
print(torch.cuda.memory_summary())
return text
def to_custom_trace(result, error, traced):
if traced is None:
assert isinstance(error, CompileTimeError)
traced = 'Compile Error'
return "-> {}\n\n--- Trace\n\n{}".format(result, traced)
def answer_from_trace(x):
assert x.startswith("->")
return x[2:].splitlines()[0].strip()
def debug(image, question, code, traced_info):
# critic
prompt = f"# Given an image: {question}\n{code}\n\n{traced_info}\n\n# Program is"
print("--- For debug: critic prompt is ---")
print(prompt)
print("---\n")
critic_out = generate("VDebugger/VDebugger-critic-generalist-7B", prompt)
incorrect = critic_out.strip().startswith('wrong')
critic_out = "# Program is" + critic_out
if not incorrect:
yield code, traced_info, critic_out, "N/A", "N/A", answer_from_trace(traced_info)
return
else:
yield code, traced_info, critic_out, "RUNNING IN PROGRESS...", "", ""
# refiner
critic_code = ('def execute_command' + critic_out.split('def execute_command')[1]).strip()
if '# Program is' in code:
critic_code = critic_code.split("# Program is")[0].strip() # errr, an awkward fix
prompt = f"# Given an image: {question}\n{critic_code}\n\n{traced_info}\n\n# Correction"
print("--- For debug: refiner prompt is ---")
print(prompt)
print("---\n")
refiner_out = generate("VDebugger/VDebugger-refiner-generalist-7B", prompt).strip()
yield code, traced_info, critic_out, refiner_out, "RUNNING IN PROGRESS...", ""
# execute (again)
result, error, traced = run_program_with_trace(refiner_out, image, INPUT_TYPE, OUTPUT_TYPE)
traced_info_2 = to_custom_trace(result, error, traced)
yield code, traced_info, critic_out, refiner_out, traced_info_2, answer_from_trace(traced_info_2)
def predict(image, question):
if image is None:
gr.Warning("Please provide an image", duration=5)
return
image = transforms.Compose([transforms.ToTensor()])(image)
question = question.strip()
if question == "":
gr.Warning("Please provide a question", duration=5)
return
# codellama
prompt = prompt_template.replace("INSERT_QUERY_HERE", f"Given an image: {question}\n{SIGNATURE}")
code = generate("codellama/CodeLlama-7b-Python-hf", prompt)
code = (SIGNATURE + code).strip()
yield code, "RUNNING IN PROGRESS...", "", "", "", ""
# execute
result, error, traced = run_program_with_trace(code, image, INPUT_TYPE, OUTPUT_TYPE)
traced_info = to_custom_trace(result, error, traced)
yield code, traced_info, "RUNNING IN PROGRESS...", "", "", ""
for tup in debug(image, question, code, traced_info):
yield tup
return
def re_debug(image, question, code, traced_info):
if code is None or code == "" or traced_info is None or traced_info == "":
gr.Warning("No prior debugging round", duration=5)
return
yield code, traced_info, "RUNNING IN PROGRESS...", "", "", ""
for tup in debug(image, question, code, traced_info):
yield tup
return
DESCRIPTION = """# VDebugger
| [Paper](https://arxiv.org/abs/2406.13444) | [Project](https://shirley-wu.github.io/vdebugger/) | [Code](https://github.com/shirley-wu/vdebugger/) | [Models and Data](https://huggingface.co/VDebugger) |
**VDebugger** is a novel critic-refiner framework trained to localize and debug *visual programs* by tracking execution step by step. In this demo, we show the visual programs, the outputs from both the critic and the refiner, as well as the final result.
**Warning:** Reduced performance and accuracy may be observed. Due to resource limitation of huggingface spaces, this demo runs Llama inference in 4-bit quantization and uses smaller foundation VLMs. For full capacity, please use the original code."""
class MyInterface(gr.Interface):
def __init__(self):
super(gr.Interface, self).__init__(
title=None,
theme=None,
analytics_enabled=None,
mode="tabbed_interface",
css=None,
js=None,
head=None,
)
self.interface_type = InterfaceTypes.STANDARD
self.description = DESCRIPTION
self.cache_examples = None
self.examples_per_page = 5
self.example_labels = None
self.batch = False
self.live = False
self.api_name = "predict"
self.max_batch_size = 4
self.concurrency_limit = 'default'
self.show_progress = "full"
self.allow_flagging = 'auto'
self.flagging_options = [("Flag", ""), ]
self.flagging_callback = CSVLogger()
self.flagging_dir = 'flagged'
# Load examples
with open('examples/questions.json') as f:
example_questions = json.load(f)
self.examples = []
for question in example_questions:
self.examples.append([
Image.open('examples/{}.jpg'.format(question['imageId'])), question['question'],
])
def load_random_example():
image, question = random.choice(self.examples)
return image, question, "", "", "", "", "", ""
# Render the Gradio UI
with self:
self.render_title_description()
with gr.Row():
image = gr.Image(label="Image", type="pil", width="30%", scale=1)
question = gr.Textbox(label="Question", scale=2)
with gr.Row():
_clear_btn = gr.ClearButton(value="Clear", variant="secondary")
_random_eg_btn = gr.Button("Random Example Input")
_submit_btn = gr.Button("Submit", variant="primary")
if inspect.isgeneratorfunction(predict) or inspect.isasyncgenfunction(predict):
_stop1_btn = gr.Button("Stop", variant="stop", visible=False)
_redebug_btn = gr.Button("Debug for Another Round", variant="primary")
if inspect.isgeneratorfunction(re_debug) or inspect.isasyncgenfunction(re_debug):
_stop2_btn = gr.Button("Stop", variant="stop", visible=False)
with gr.Row():
o1 = gr.Textbox(label="No debugging: program")
o2 = gr.Textbox(label="No debugging: execution")
with gr.Row():
o3 = gr.Textbox(label="VDebugger: critic")
o4 = gr.Textbox(label="VDebugger: refiner")
with gr.Row():
o5 = gr.Textbox(label="VDebugger: execution")
o6 = gr.Textbox(label="VDebugger: final answer")
question.submit(fn=predict, inputs=[image, question], outputs=[o1, o2, o3, o4, o5, o6])
_random_eg_btn.click(fn=load_random_example, outputs=[image, question, o1, o2, o3, o4, o5, o6])
async def cleanup():
return [gr.Button(visible=True), gr.Button(visible=False)]
# Setup redebug event
triggers = [_redebug_btn.click, ]
extra_output = [_redebug_btn, _stop2_btn]
predict_event = gr.on(
triggers,
gr.utils.async_lambda(
lambda: (
gr.Button(visible=False),
gr.Button(visible=True),
)
),
inputs=None,
outputs=[_redebug_btn, _stop2_btn],
queue=False,
show_api=False,
).then(
re_debug,
[image, question, o4, o5],
[o1, o2, o3, o4, o5, o6],
api_name=self.api_name,
scroll_to_output=False,
preprocess=not (self.api_mode),
postprocess=not (self.api_mode),
batch=self.batch,
max_batch_size=self.max_batch_size,
concurrency_limit=self.concurrency_limit,
show_progress=cast(
Literal["full", "minimal", "hidden"], self.show_progress
),
)
redebug_event = predict_event.then(
cleanup,
inputs=None,
outputs=extra_output, # type: ignore
queue=False,
show_api=False,
)
_stop2_btn.click(
cleanup,
inputs=None,
outputs=[_redebug_btn, _stop2_btn],
cancels=predict_event,
queue=False,
show_api=False,
)
# Setup submit event
triggers = [_submit_btn.click, question.submit, ]
extra_output = [_submit_btn, _stop1_btn]
predict_event = gr.on(
triggers,
gr.utils.async_lambda(
lambda: (
gr.Button(visible=False),
gr.Button(visible=True),
)
),
inputs=None,
outputs=[_submit_btn, _stop1_btn],
queue=False,
show_api=False,
).then(
predict,
[image, question],
[o1, o2, o3, o4, o5, o6],
api_name=self.api_name,
scroll_to_output=False,
preprocess=not (self.api_mode),
postprocess=not (self.api_mode),
batch=self.batch,
max_batch_size=self.max_batch_size,
concurrency_limit=self.concurrency_limit,
show_progress=cast(
Literal["full", "minimal", "hidden"], self.show_progress
),
)
submit_event = predict_event.then(
cleanup,
inputs=None,
outputs=extra_output, # type: ignore
queue=False,
show_api=False,
)
_stop1_btn.click(
cleanup,
inputs=None,
outputs=[_submit_btn, _stop1_btn],
cancels=predict_event,
queue=False,
show_api=False,
)
# Finally borrow Interface stuff
self.input_components = [image, question]
self.output_components = [o1, o2, o3, o4, o5, o6]
self.fn = predict
self.attach_clear_events(_clear_btn, None)
self.render_examples()
if __name__ == "__main__":
MyInterface().launch(share=os.environ.get("SHARE", '') != "")
|