Spaces:
Runtime error
Runtime error
# Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts (https://arxiv.org/abs/2111.08276) | |
# Github: https://github.com/zengyan-97/X-VLM | |
# Copyright (c) 2022, ByteDance Inc. | |
# All rights reserved. | |
import json | |
import os | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from xvlm.swin_transformer import SwinTransformer, interpolate_relative_pos_embed | |
from xvlm.vit import interpolate_pos_embed | |
from xvlm.xbert import BertConfig, BertForMaskedLM, BertModel | |
def read_json(rpath): | |
with open(rpath, 'r') as f: | |
return json.load(f) | |
class AllGather(torch.autograd.Function): | |
"""An autograd function that performs allgather on a tensor.""" | |
def forward(ctx, tensor, rank, world_size): | |
output = [torch.empty_like(tensor) for _ in range(world_size)] | |
dist.all_gather(output, tensor) | |
ctx.rank = rank | |
ctx.batch_size = tensor.shape[0] | |
return torch.cat(output, 0) | |
def backward(ctx, grad_output): | |
return ( | |
grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)], | |
None, | |
None | |
) | |
allgather = AllGather.apply | |
def build_vision_encoder(vision_config, load_params=False): | |
""" | |
Args: | |
load_params: False when building fine-tuning models | |
""" | |
vision_width = vision_config['vision_width'] | |
vision_encoder = SwinTransformer(img_size=vision_config['image_res'], | |
patch_size=4, | |
in_chans=3, | |
embed_dim=vision_config['embed_dim'], | |
depths=vision_config['depths'], | |
num_heads=vision_config['num_heads'], | |
window_size=vision_config['window_size'], | |
mlp_ratio=4., | |
qkv_bias=True, | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False) | |
if load_params: | |
# download from https://github.com/microsoft/Swin-Transformer | |
state_dict = torch.load(vision_config['ckpt'], map_location="cpu")['model'] | |
for k in list(state_dict.keys()): | |
if 'relative_position_bias_table' in k: | |
dst_num_pos = (2 * vision_config['window_size'] - 1) ** 2 | |
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k) | |
elif ('relative_position_index' in k) or ('attn_mask' in k): | |
del state_dict[k] | |
if load_params: | |
print("### Load ViT: ", flush=True) | |
msg = vision_encoder.load_state_dict(state_dict, strict=False) | |
print("missing_keys: ", msg.missing_keys) | |
print("unexpected_keys: ", msg.unexpected_keys) | |
return vision_encoder, vision_width | |
def build_text_encoder(config, vision_width, load_text_params=False, use_mlm_loss=False, config_text=None): | |
init_params = [] # train from scratch with larger lr | |
config_text = BertConfig.from_json_file('xvlm/config_bert.json') | |
config_text.encoder_width = vision_width | |
if use_mlm_loss: # for pre-training, load_text_params by default (otherwise notimplemented) | |
assert load_text_params is True | |
if ('accelerator' in config.keys()) and (config['accelerator']['FP16_OPT_LEVEL'] != 'O0'): | |
config_text.fp16 = True # will use some operations to avoid gradient overflow | |
text_encoder, msg = BertForMaskedLM.from_pretrained(config['text_encoder'], config=config_text, | |
output_loading_info=True) | |
print("### Load BERT: ") | |
for k, v in msg.items(): | |
print(f"{k}: {sorted(v)}") | |
init_params.extend(['text_encoder.' + n for n in msg['missing_keys']]) # of cross attention | |
if ('load_bertL_by_sep' in config.keys()) and config['load_bertL_by_sep']: | |
state_dict = torch.load(os.path.join(config['text_encoder'], 'pytorch_model.bin')) | |
for idx, i_layer in enumerate([13, 15, 17, 19, 21, 23]): | |
state_dict_i = {k[22:]: v for k, v in state_dict.items() if f'layer.{i_layer}' in k} | |
msg = text_encoder.bert.encoder.layer[config_text.fusion_layer + idx]. \ | |
load_state_dict(state_dict_i, strict=False) | |
print(f"### Load {i_layer} to {config_text.fusion_layer + idx}-layer: {msg}") | |
else: # for fine-tuning, not load_text_params by default | |
assert load_text_params is False | |
text_encoder = BertModel(config=config_text, add_pooling_layer=False) | |
return text_encoder, init_params | |
def build_mlp(input_dim, output_dim): | |
return nn.Sequential( | |
nn.Linear(input_dim, input_dim * 2), | |
nn.LayerNorm(input_dim * 2), | |
nn.GELU(), | |
nn.Linear(input_dim * 2, output_dim) | |
) | |
def load_pretrained(ckpt_rpath, config, is_eval=False, load_text=False): | |
checkpoint = torch.load(ckpt_rpath, map_location='cpu') | |
state_dict = checkpoint['model'] if 'model' in checkpoint.keys() else checkpoint | |
if is_eval: | |
return state_dict | |
num_patches = (config['image_res'] // config['patch_size']) ** 2 | |
print("### Loading pretrained vision encoder", flush=True) | |
if config['use_clip_vit']: | |
del state_dict['vision_encoder.position_ids'] | |
pos_embed_reshaped = interpolate_pos_embed(state_dict['vision_encoder.pos_embed.weight'].unsqueeze(dim=0), | |
num_patches=num_patches, num_extra_tokens=1) | |
state_dict['vision_encoder.pos_embed.weight'] = pos_embed_reshaped.squeeze(dim=0) | |
elif config['use_swin']: | |
window_size = read_json(config['vision_config'])['window_size'] | |
for k in list(state_dict.keys()): | |
if 'relative_position_bias_table' in k: | |
dst_num_pos = (2 * window_size - 1) ** 2 | |
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k) | |
elif ('relative_position_index' in k) or ('attn_mask' in k): | |
del state_dict[k] | |
else: | |
pos_embed_reshaped = interpolate_pos_embed(state_dict['vision_encoder.pos_embed'], | |
num_patches=num_patches, num_extra_tokens=1) | |
state_dict['vision_encoder.pos_embed'] = pos_embed_reshaped | |
if load_text: | |
print("### Loading pretrained text encoder", flush=True) | |
for key in list(state_dict.keys()): | |
if 'text_encoder.' in key: | |
if 'bert.' in key: | |
encoder_key = key.replace('bert.', '') | |
state_dict[encoder_key] = state_dict[key] | |
del state_dict[key] | |
return state_dict | |
class XVLMBase(nn.Module): | |
def __init__(self, config=None, load_vision_params=False, load_text_params=False, | |
use_contrastive_loss=False, use_matching_loss=False, use_mlm_loss=False, use_bbox_loss=False, | |
config_text=None, vision_config=None): | |
super().__init__() | |
self.init_params = [] # train from scratch with larger lr | |
self.vision_encoder, vision_width = build_vision_encoder(vision_config, load_params=load_vision_params) | |
self.text_encoder, init_params = build_text_encoder(vision_config, vision_width=vision_width, | |
load_text_params=load_text_params, | |
use_mlm_loss=use_mlm_loss, | |
config_text=config_text) # text & cross-modal | |
self.init_params.extend(init_params) | |
self.vision_width = vision_width | |
self.text_width = self.text_encoder.config.hidden_size # i.e. cross_width | |
if use_contrastive_loss: | |
self.embed_dim = config['embed_dim'] | |
self.vision_proj = nn.Linear(self.vision_width, self.embed_dim) | |
self.text_proj = nn.Linear(self.text_width, self.embed_dim) | |
self.init_params.extend(['vision_proj.' + n for n, _ in self.vision_proj.named_parameters()]) | |
self.init_params.extend(['text_proj.' + n for n, _ in self.text_proj.named_parameters()]) | |
if use_matching_loss: | |
self.itm_head = build_mlp(input_dim=self.text_width, output_dim=2) | |
self.init_params.extend(['itm_head.' + n for n, _ in self.itm_head.named_parameters()]) | |
if use_bbox_loss: | |
self.bbox_head = build_mlp(input_dim=self.text_width, output_dim=4) | |
self.init_params.extend(['bbox_head.' + n for n, _ in self.bbox_head.named_parameters()]) | |
def load_pretrained(self, ckpt_rpath, config, is_eval=False): | |
state_dict = load_pretrained(ckpt_rpath, config, is_eval=is_eval, load_text=True) | |
msg = self.load_state_dict(state_dict, strict=False) | |
print('load checkpoint from %s' % ckpt_rpath) | |
print("missing_keys: ", [p for p in msg.missing_keys if 'vision_encoder' not in p]) | |
print("unexpected_keys: ", msg.unexpected_keys) | |
def get_vision_embeds(self, image, image_atts=None, idx_to_group_img=None): | |
""" | |
vision_embeds: cls + patch embeds | |
""" | |
if idx_to_group_img is None: | |
image_embeds = self.vision_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) | |
return image_embeds, image_atts | |
else: | |
if image_atts is None: | |
image_embeds_fullatts = self.vision_encoder(image) | |
image_embeds_fullatts = torch.gather(image_embeds_fullatts, dim=0, | |
index=idx_to_group_img.view(-1, 1, 1).expand( | |
-1, image_embeds_fullatts.shape[1], | |
image_embeds_fullatts.shape[2])) | |
image_atts = torch.ones(image_embeds_fullatts.size()[:-1], dtype=torch.long).to(image.device) | |
return image_embeds_fullatts, image_atts | |
else: | |
assert image_atts.size(0) == idx_to_group_img.size(0) # bsz | |
image_embeds, image_embeds_fullatts = \ | |
self.vision_encoder(image, idx_to_group_img=idx_to_group_img, image_atts=image_atts) | |
image_embeds_fullatts = torch.gather(image_embeds_fullatts, dim=0, | |
index=idx_to_group_img.view(-1, 1, 1).expand( | |
-1, image_embeds_fullatts.shape[1], | |
image_embeds_fullatts.shape[2])) | |
return image_embeds, image_atts, image_embeds_fullatts | |
def get_text_embeds(self, text_ids, text_atts): | |
encoder = self.text_encoder.bert if hasattr(self.text_encoder, 'bert') else self.text_encoder | |
return encoder(text_ids, attention_mask=text_atts, return_dict=True, mode='text').last_hidden_state | |
def get_cross_embeds(self, image_embeds, image_atts, text_ids=None, text_embeds=None, text_atts=None): | |
assert text_atts is not None | |
encoder = self.text_encoder.bert if hasattr(self.text_encoder, 'bert') else self.text_encoder | |
if text_embeds is not None: | |
return encoder(encoder_embeds=text_embeds, | |
attention_mask=text_atts, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
mode='fusion', | |
).last_hidden_state | |
elif text_ids is not None: | |
return encoder(text_ids, | |
attention_mask=text_atts, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
).last_hidden_state | |
else: | |
raise ValueError | |
def get_features(self, image_embeds=None, text_embeds=None): | |
if image_embeds is None: | |
return F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1) | |
elif text_embeds is None: | |
return F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) | |
else: | |
return F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1), \ | |
F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1) | |
def get_contrastive_loss(self, image_feat, text_feat, idx=None): | |
""" | |
Args: | |
image_feat, text_feat: normalized | |
Returns: contrastive loss | |
""" | |
assert image_feat.size(-1) == self.embed_dim | |
assert text_feat.size(-1) == self.embed_dim | |
image_feat_all = allgather(image_feat, torch.distributed.get_rank(), torch.distributed.get_world_size()) | |
text_feat_all = allgather(text_feat, torch.distributed.get_rank(), torch.distributed.get_world_size()) | |
logits = image_feat_all @ text_feat_all.t() / self.temp | |
bsz = image_feat_all.shape[0] | |
if idx is None: | |
labels = torch.arange(bsz, device=image_feat.device) | |
loss_i2t = F.cross_entropy(logits, labels) | |
loss_t2i = F.cross_entropy(logits.t(), labels) | |
else: | |
idx = idx.view(-1, 1) | |
assert idx.size(0) == image_feat.size(0) | |
idx_all = allgather(idx, torch.distributed.get_rank(), torch.distributed.get_world_size()) | |
pos_idx = torch.eq(idx_all, idx_all.t()).float() | |
labels = pos_idx / pos_idx.sum(1, keepdim=True) | |
loss_i2t = -torch.sum(F.log_softmax(logits, dim=1) * labels, dim=1).mean() | |
loss_t2i = -torch.sum(F.log_softmax(logits.t(), dim=1) * labels, dim=1).mean() | |
return (loss_i2t + loss_t2i) / 2 | |
def get_matching_loss(self, image_embeds, image_atts, image_feat, text_embeds, text_atts, text_feat, idx=None): | |
""" | |
Matching Loss with hard negatives | |
""" | |
bs = image_embeds.size(0) | |
with torch.no_grad(): | |
sim_i2t = image_feat @ text_feat.t() / self.temp | |
sim_t2i = text_feat @ image_feat.t() / self.temp | |
weights_i2t = F.softmax(sim_i2t, dim=1) + 1e-5 | |
weights_t2i = F.softmax(sim_t2i, dim=1) + 1e-5 | |
if idx is None: | |
weights_i2t.fill_diagonal_(0) | |
weights_t2i.fill_diagonal_(0) | |
else: | |
idx = idx.view(-1, 1) | |
assert idx.size(0) == bs | |
mask = torch.eq(idx, idx.t()) | |
weights_i2t.masked_fill_(mask, 0) | |
weights_t2i.masked_fill_(mask, 0) | |
image_embeds_neg = [] | |
image_atts_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_t2i[b], 1).item() | |
image_embeds_neg.append(image_embeds[neg_idx]) | |
image_atts_neg.append(image_atts[neg_idx]) | |
image_embeds_neg = torch.stack(image_embeds_neg, dim=0) | |
image_atts_neg = torch.stack(image_atts_neg, dim=0) | |
text_embeds_neg = [] | |
text_atts_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_i2t[b], 1).item() | |
text_embeds_neg.append(text_embeds[neg_idx]) | |
text_atts_neg.append(text_atts[neg_idx]) | |
text_embeds_neg = torch.stack(text_embeds_neg, dim=0) | |
text_atts_neg = torch.stack(text_atts_neg, dim=0) | |
text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0) | |
text_atts_all = torch.cat([text_atts, text_atts_neg], dim=0) | |
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0) | |
image_atts_all = torch.cat([image_atts_neg, image_atts], dim=0) | |
cross_pos = self.get_cross_embeds(image_embeds, image_atts, text_embeds=text_embeds, text_atts=text_atts)[:, 0, | |
:] | |
cross_neg = self.get_cross_embeds(image_embeds_all, image_atts_all, text_embeds=text_embeds_all, | |
text_atts=text_atts_all)[:, 0, :] | |
output = self.itm_head(torch.cat([cross_pos, cross_neg], dim=0)) | |
itm_labels = torch.cat([torch.ones(bs, dtype=torch.long), | |
torch.zeros(2 * bs, dtype=torch.long)], dim=0).to(image_embeds.device) | |
return F.cross_entropy(output, itm_labels) | |
def get_mlm_loss(self, text_ids_masked, text_atts, image_embeds, image_atts, masked_pos, masked_ids): | |
return self.text_encoder(text_ids_masked, | |
attention_mask=text_atts, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
labels=masked_ids, | |
masked_pos=masked_pos).loss | |
def predict_bbox(self, image_embeds, text_embeds, text_atts): | |
""" | |
Args: | |
image_embeds: encoding full images | |
Returns: | |
output_coord: bsz, 4 | |
""" | |
assert image_embeds.size(0) == text_embeds.size(0) | |
output_cls = self.get_cross_embeds(image_embeds, torch.ones(image_embeds.shape[:2]).to(image_embeds.device), | |
text_embeds=text_embeds, text_atts=text_atts)[:, 0, :] | |
output_coord = self.bbox_head(output_cls).sigmoid() | |
return output_coord | |