from functools import partial import torch import torch.nn as nn from timm.models.layers import trunc_normal_, DropPath from timm.models.vision_transformer import PatchEmbed class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_gradients = None self.attention_map = None def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def forward(self, x, register_hook=False, image_atts=None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale if image_atts is not None: attn += image_atts attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) if register_hook: self.save_attention_map(attn) attn.register_hook(self.save_attn_gradients) # attn: (bs, num_heads, num_patches, num_patches) # v: (bs, num_heads, num_patches, d) # attn @ v: (bs, num_heads, num_patches, d) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, register_hook=False, image_atts=None): x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook, image_atts=image_atts)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, local_attn_depth=0): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer """ super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) self.num_patch_embed = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.num_pos_embed = self.num_patch_embed + 1 self.pos_embed = nn.Parameter(torch.zeros(1, self.num_pos_embed, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.depth = depth self.local_attn_depth = local_attn_depth # do local attn from index=(depth - local_attn_depth) self.norm = norm_layer(embed_dim) trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward(self, x, register_blk=-1, idx_to_group_img=None, image_atts=None): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed[:, :x.size(1), :] x = self.pos_drop(x) do_gather = True if idx_to_group_img is not None else False if do_gather and (image_atts is not None): full_atts = torch.ones(x.shape[:2], dtype=x.dtype).to(x.device) image_atts_blk = torch.cat([image_atts, full_atts], dim=0) image_atts_blk = image_atts_blk.unsqueeze(1).unsqueeze(2) image_atts_blk = (1.0 - image_atts_blk) * -10000.0 else: image_atts_blk = None for i, blk in enumerate(self.blocks): if (self.local_attn_depth > 0) and (i >= self.depth - self.local_attn_depth): if do_gather: do_gather = False x_bs = torch.gather(x, dim=0, index=idx_to_group_img.view(-1, 1, 1).expand(-1, x.shape[1], x.shape[2])) x = torch.cat([x_bs, x], dim=0) x = blk(x, register_blk == i, image_atts=image_atts_blk) else: x = blk(x, register_blk == i, image_atts=None) x = self.norm(x) if idx_to_group_img is not None: bs = len(idx_to_group_img) x_bs, x_fullatts = torch.split(x, [bs, x.size(0) - bs]) return x_bs, x_fullatts return x def interpolate_pos_embed(pos_embed_checkpoint, num_patches, num_extra_tokens=1): # num_patches = visual_encoder.num_patch_embed # num_extra_tokens = visual_encoder.num_pos_embed - visual_encoder.num_patch_embed # interpolate position embedding embedding_size = pos_embed_checkpoint.shape[-1] # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) if orig_size != new_size: # class_token and dist_token are kept unchanged extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) # print('reshape position embedding from %d to %d' % (orig_size ** 2, new_size ** 2)) return new_pos_embed else: return pos_embed_checkpoint