import os import app_configs as configs from feedback import Feedback import service import gradio as gr import numpy as np import cv2 from PIL import Image import logging from huggingface_hub import hf_hub_download import torch logging.basicConfig(level=logging.INFO) logger = logging.getLogger() sam = None #service.get_sam(configs.model_type, configs.model_ckpt_path, configs.device) red = (255,0,0) blue = (0,0,255) def load_sam_instance(): global sam if sam is None: gr.Info('Initialising SAM, hang in there...') if not os.path.exists(configs.model_ckpt_path): chkpt_path = hf_hub_download("ybelkada/segment-anything", configs.model_ckpt_path) else: chkpt_path = configs.model_ckpt_path device = configs.device if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' sam = service.get_sam(configs.model_type, chkpt_path, device) return sam block = gr.Blocks() with block: # states def point_coords_empty(): return [] def point_labels_empty(): return [] raw_image = gr.Image(type='pil', visible=False) point_coords = gr.State(point_coords_empty) point_labels = gr.State(point_labels_empty) masks = gr.State() cutout_idx = gr.State(set()) feedback = gr.State(lambda : Feedback()) # UI with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input', height=512, type='pil') masks_annotated_image = gr.AnnotatedImage(label='Segments', height=512) cutout_galary = gr.Gallery(label='Cutouts', object_fit='contain', height=512) with gr.Row(): with gr.Column(scale=1): point_label_radio = gr.Radio(label='Point Label', choices=[1,0], value=1) with gr.Row(): run_btn = gr.Button('Run', variant = 'primary') reset_btn = gr.Button('Reset') #with gr.Column(scale=2): # with gr.Accordion('Provide Feedback', open=False): # feedback_textbox = gr.Textbox(lines=3, show_label=False, info="Comments (Leave blank to vote without any comments)") # with gr.Row(): # upvote_button = gr.Button('Upvote') # downvote_button = gr.Button('Downvote') # components components = { point_coords, point_labels, raw_image, masks, cutout_idx, feedback, input_image, point_label_radio, reset_btn, run_btn, masks_annotated_image} # event - init coords def on_reset_btn_click(raw_image): return raw_image, point_coords_empty(), point_labels_empty(), None, [] reset_btn.click(on_reset_btn_click, [raw_image], [input_image, point_coords, point_labels], queue=False) def on_input_image_upload(input_image): return input_image, point_coords_empty(), point_labels_empty(), None input_image.upload(on_input_image_upload, [input_image], [raw_image, point_coords, point_labels], queue=False) # event - set coords def on_input_image_select(input_image, point_coords, point_labels, point_label_radio, evt: gr.SelectData): x, y = evt.index color = red if point_label_radio == 0 else blue img = np.array(input_image) cv2.circle(img, (x, y), 5, color, -1) img = Image.fromarray(img) point_coords.append([x,y]) point_labels.append(point_label_radio) return img, point_coords, point_labels input_image.select(on_input_image_select, [input_image, point_coords, point_labels, point_label_radio], [input_image, point_coords, point_labels], queue=False) # event - inference def on_run_btn_click(inputs): sam = load_sam_instance() image = inputs[raw_image] if len(inputs[point_coords]) == 0: if configs.enable_segment_all: generated_masks, _ = service.predict_all(sam, image) else: raise gr.Error('Segment-all disabled, set point label(s) before running') else: generated_masks, _ = service.predict_conditioned(sam, image, point_coords=np.array(inputs[point_coords]), point_labels=np.array(inputs[point_labels])) annotated = (image, [(generated_masks[i], f'Mask {i}') for i in range(len(generated_masks))]) inputs[feedback].save_inference( pt_coords=inputs[point_coords], pt_labels=inputs[point_labels], image=inputs[raw_image], mask=generated_masks, ) return { masks_annotated_image:annotated, masks: generated_masks, cutout_idx: set(), feedback: inputs[feedback], } run_btn.click(on_run_btn_click, components, [masks_annotated_image, masks, cutout_idx, feedback], queue=True) # event - get cutout def on_masks_annotated_image_select(inputs, evt:gr.SelectData): inputs[cutout_idx].add(evt.index) cutouts = [service.cutout(inputs[raw_image], inputs[masks][idx]) for idx in list(inputs[cutout_idx])] tight_cutouts = [service.crop_empty(cutout) for cutout in cutouts] inputs[feedback].save_feedback(cutout_idx=evt.index) return inputs[cutout_idx], tight_cutouts, inputs[feedback] masks_annotated_image.select(on_masks_annotated_image_select, components, [cutout_idx, cutout_galary, feedback], queue=False) # event - feedback def on_upvote_button_click(inputs): inputs[feedback].save_feedback(like=1, feedback_str=inputs[feedback_textbox]) gr.Info('Thanks for your feedback') return {feedback:inputs[feedback],feedback_textbox:None} #upvote_button.click(on_upvote_button_click,components,[feedback, feedback_textbox], queue=False) def on_downvote_button_click(inputs): inputs[feedback].save_feedback(like=-1, feedback_str=inputs[feedback_textbox]) gr.Info('Thanks for your feedback') return {feedback:inputs[feedback],feedback_textbox:None} #downvote_button.click(on_downvote_button_click,components,[feedback, feedback_textbox], queue=False) if __name__ == '__main__': block.queue() block.launch()