Vaishakhh commited on
Commit
dddbd3c
1 Parent(s): 0a0c4c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -35,7 +35,7 @@ adequacy_score = Adequacy()
35
  fluency_score = Fluency()
36
  diversity_score= Diversity()
37
  device= "cuda:0"
38
- adequacy_threshold = 0.90
39
  fluency_threshold = 0.90 # Fluency (Is the paraphrase fluent English?)
40
  diversity_ranker="levenshtein"
41
  do_diverse=True # Diversity (Lexical / Phrasal / Syntactical) (How much has the paraphrase changed the original sentence?)
@@ -51,7 +51,8 @@ def get_max_str(lst):
51
  return max(lst, key=len)
52
  def get_response(input_text,num_return_sequences=10,num_beams=10):
53
  batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=True,padding='longest',max_length=90, return_tensors='pt').to(torch_device)
54
- translated = model_pegasus.generate(**batch,max_length=90,num_beams=num_beams, num_return_sequences=num_return_sequences, num_beam_groups=num_beams, diversity_penalty=0.5, temperature=1.5)
 
55
  tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
56
  try:
57
  adequacy_filtered_phrases = adequacy_score.filter(input_text,tgt_text, adequacy_threshold, device)
 
35
  fluency_score = Fluency()
36
  diversity_score= Diversity()
37
  device= "cuda:0"
38
+ adequacy_threshold = 0.99
39
  fluency_threshold = 0.90 # Fluency (Is the paraphrase fluent English?)
40
  diversity_ranker="levenshtein"
41
  do_diverse=True # Diversity (Lexical / Phrasal / Syntactical) (How much has the paraphrase changed the original sentence?)
 
51
  return max(lst, key=len)
52
  def get_response(input_text,num_return_sequences=10,num_beams=10):
53
  batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=True,padding='longest',max_length=90, return_tensors='pt').to(torch_device)
54
+ translated = model_pegasus.generate(**batch,max_length=90,num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=1.5)
55
+ #num_beam_groups=num_beams, diversity_penalty=0.5
56
  tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
57
  try:
58
  adequacy_filtered_phrases = adequacy_score.filter(input_text,tgt_text, adequacy_threshold, device)