from pathlib import Path import torchaudio import gradio as gr import numpy as np import torch from hifigan.config import v1 from hifigan.denoiser import Denoiser from hifigan.env import AttrDict from hifigan.models import Generator as HiFiGAN #from BigVGAN.models import BigVGAN #from BigVGAN.env import AttrDict as BigVGANAttrDict from pflow.models.pflow_tts import pflowTTS from pflow.text import text_to_sequence, sequence_to_text from pflow.utils.utils import intersperse from pflow.data.text_mel_datamodule import mel_spectrogram from pflow.utils.model import normalize BIGVGAN_CONFIG = { "resblock": "1", "num_gpus": 0, "batch_size": 32, "learning_rate": 0.0001, "adam_b1": 0.8, "adam_b2": 0.99, "lr_decay": 0.999, "seed": 1234, "upsample_rates": [4,4,2,2,2,2], "upsample_kernel_sizes": [8,8,4,4,4,4], "upsample_initial_channel": 1536, "resblock_kernel_sizes": [3,7,11], "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]], "activation": "snakebeta", "snake_logscale": True, "resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]], "mpd_reshapes": [2, 3, 5, 7, 11], "use_spectral_norm": False, "discriminator_channel_mult": 1, "segment_size": 8192, "num_mels": 80, "num_freq": 1025, "n_fft": 1024, "hop_size": 256, "win_size": 1024, "sampling_rate": 22050, "fmin": 0, "fmax": 8000, "fmax_for_loss": None, "num_workers": 4, "dist_config": { "dist_backend": "nccl", "dist_url": "tcp://localhost:54321", "world_size": 1 } } PFLOW_MODEL_PATH = 'checkpoint_epoch=499.ckpt' VOCODER_MODEL_PATH = 'g_00120000' VOCODER_BIGVGAN_MODEL_PATH = 'g_05000000' wav, sr = torchaudio.load('prompt.wav') prompt = mel_spectrogram( wav, 1024, 80, 22050, 256, 1024, 0, 8000, center=False, )[:,:,:264] def process_text(text: str, device: torch.device): x = torch.tensor( intersperse(text_to_sequence(text, ["ukr_cleaners"]), 0), dtype=torch.long, device=device, )[None] x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device) x_phones = sequence_to_text(x.squeeze(0).tolist()) return {"x_orig": text, "x": x, "x_lengths": x_lengths, 'x_phones':x_phones} def load_hifigan(checkpoint_path, device): h = AttrDict(v1) hifigan = HiFiGAN(h).to(device) hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"]) _ = hifigan.eval() hifigan.remove_weight_norm() return hifigan def load_bigvgan(checkpoint_path, device): print("Loading '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location=device) h = BigVGANAttrDict(BIGVGAN_CONFIG) torch.manual_seed(h.seed) generator = BigVGAN(h).to(device) generator.load_state_dict(checkpoint_dict['generator']) generator.eval() generator.remove_weight_norm() return generator def to_waveform(mel, vocoder, denoiser=None): audio = vocoder(mel).clamp(-1, 1) if denoiser is not None: audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze() return audio.cpu().squeeze() def get_device(): if torch.cuda.is_available(): print("[+] GPU Available! Using GPU") device = torch.device("cuda") else: print("[-] GPU not available or forced CPU run! Using CPU") device = torch.device("cpu") return device device = get_device() model = pflowTTS.load_from_checkpoint(PFLOW_MODEL_PATH, map_location=device) _ = model.eval() #vocoder = load_bigvgan(VOCODER_BIGVGAN_MODEL_PATH, device) vocoder = load_hifigan(VOCODER_MODEL_PATH, device) denoiser = Denoiser(vocoder, mode="zeros") @torch.inference_mode() def synthesise(text, temperature, speed): if len(text) > 1000: raise gr.Error("Текст повинен бути коротшим за 1000 символів.") text_processed = process_text(text.strip(), device) output = model.synthesise( text_processed["x"], text_processed["x_lengths"], n_timesteps=40, temperature=temperature, length_scale=1/speed, prompt= normalize(prompt, model.mel_mean, model.mel_std) ) waveform = to_waveform(output["mel"], vocoder, denoiser) return text_processed['x_phones'][1::2], (22050, waveform.numpy()) description = f''' # Експериментальна апка для генерації аудіо з тексту. pflow checkpoint {PFLOW_MODEL_PATH} vocoder: HIFIGAN(трейнутий на датасеті, з нуля) - {VOCODER_MODEL_PATH} ''' if __name__ == "__main__": i = gr.Interface( fn=synthesise, description=description, inputs=[ gr.Text(label='Текст для синтезу:', lines=5, max_lines=10), gr.Slider(minimum=0.0, maximum=1.0, label="Температура", value=0.2), gr.Slider(minimum=0.6, maximum=2.0, label="Швидкість", value=1.0) ], outputs=[ gr.Text(label='Фонемізований текст:', lines=5), gr.Audio( label="Згенероване аудіо:", autoplay=False, streaming=False, type="numpy", ) ], allow_flagging ='manual', flagging_options=[("Якщо дуже погоне аудіо, тисни цю кнопку.", "negative")], cache_examples=True, title='', # description=description, # article=article, # examples=examples, ) i.queue(max_size=20, default_concurrency_limit=4) i.launch(share=False, server_name="0.0.0.0")