Spaces:
Running
Running
File size: 10,842 Bytes
2ae3b27 35a89f7 aeb0da7 49e262d c063f53 6611d88 f063aad a635b9d 35a89f7 c4ab057 52ac625 c4ab057 7340433 c1f5a69 1452546 b021bd9 1659677 1452546 2ae3b27 1452546 2ae3b27 1452546 2ae3b27 c1f5a69 1452546 1659677 6611d88 1452546 6611d88 4d42795 2ae3b27 59f1f35 1452546 59f1f35 1452546 59f1f35 1452546 59f1f35 1452546 59f1f35 0f19bde 7340433 2d895b3 7340433 2d895b3 7340433 85ae27d 1452546 0988648 1452546 0988648 1452546 85ae27d 7340433 2d895b3 7340433 ba77b4b 7340433 ba77b4b c063f53 7340433 2ae3b27 1fa59b4 7340433 f132f18 33c3a6a 2ae3b27 c4ab057 7340433 2ae3b27 df9540e 2ae3b27 8aaab52 b41f9f9 480768c 46446c7 8aaab52 f4dbb46 b41f9f9 2ae3b27 481d9fe b9843eb 1b87e0c 4f1338c b9843eb 2ae3b27 fa9b35a 2ae3b27 fa9b35a c1f5a69 4301853 e89adb4 7340433 f132f18 c1f5a69 1452546 7340433 2d895b3 c1f5a69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
# this is .py for store constants
MODEL_INFO = [
"Model Name (clickable)",
"Source",
"Date",
"Total Score",
"Quality Score",
"Semantic Score",
"Selected Score",
]
MODEL_INFO_TAB_QUALITY = [
"Model Name (clickable)",
"Quality Score",
"Selected Score"
]
MODEL_INFO_TAB_I2V = [
"Model Name (clickable)",
"Total Score",
"I2V Score",
"Quality Score",
"Selected Score"
]
TASK_INFO = [
"subject consistency",
"background consistency",
"temporal flickering",
"motion smoothness",
"dynamic degree",
"aesthetic quality",
"imaging quality",
"object class",
"multiple objects",
"human action",
"color",
"spatial relationship",
"scene",
"appearance style",
"temporal style",
"overall consistency"]
DEFAULT_INFO = [
"subject consistency",
"background consistency",
"temporal flickering",
"motion smoothness",
"dynamic degree",
"aesthetic quality",
"imaging quality",
"object class",
"multiple objects",
"human action",
"color",
"spatial relationship",
"scene",
"appearance style",
"temporal style",
"overall consistency"
]
QUALITY_LIST = [
"subject consistency",
"background consistency",
"temporal flickering",
"motion smoothness",
"aesthetic quality",
"imaging quality",
"dynamic degree",]
SEMANTIC_LIST = [
"object class",
"multiple objects",
"human action",
"color",
"spatial relationship",
"scene",
"appearance style",
"temporal style",
"overall consistency"
]
QUALITY_TAB = [
"subject consistency",
"background consistency",
"motion smoothness",
"aesthetic quality",
"imaging quality",
"dynamic degree",]
I2V_LIST = [
"Video-Image Subject Consistency",
"Video-Image Background Consistency",
]
I2V_QUALITY_LIST = [
"Subject Consistency",
"Background Consistency",
"Motion Smoothness",
"Dynamic Degree",
"Aesthetic Quality",
"Imaging Quality",
"Temporal Flickering"
]
I2V_TAB = [
"Video-Text Camera Motion",
"Video-Image Subject Consistency",
"Video-Image Background Consistency",
"Subject Consistency",
"Background Consistency",
"Motion Smoothness",
"Dynamic Degree",
"Aesthetic Quality",
"Imaging Quality",
"Temporal Flickering"
]
DIM_WEIGHT = {
"subject consistency":1,
"background consistency":1,
"temporal flickering":1,
"motion smoothness":1,
"aesthetic quality":1,
"imaging quality":1,
"dynamic degree":0.5,
"object class":1,
"multiple objects":1,
"human action":1,
"color":1,
"spatial relationship":1,
"scene":1,
"appearance style":1,
"temporal style":1,
"overall consistency":1
}
DIM_WEIGHT_I2V = {
"Video-Text Camera Motion": 0.1,
"Video-Image Subject Consistency": 1,
"Video-Image Background Consistency": 1,
"Subject Consistency": 1,
"Background Consistency": 1,
"Motion Smoothness": 1,
"Dynamic Degree": 0.5,
"Aesthetic Quality": 1,
"Imaging Quality": 1,
"Temporal Flickering": 1
}
SEMANTIC_WEIGHT = 1
QUALITY_WEIGHT = 4
I2V_WEIGHT = 1.0
I2V_QUALITY_WEIGHT = 1.0
DATA_TITILE_TYPE = ['markdown', 'markdown', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
I2V_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
SUBMISSION_NAME = "vbench_leaderboard_submission"
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/Vchitect/", SUBMISSION_NAME)
CSV_DIR = "./vbench_leaderboard_submission/results.csv"
QUALITY_DIR = "./vbench_leaderboard_submission/quality.csv"
I2V_DIR = "./vbench_leaderboard_submission/i2v_results.csv"
LONG_DIR = "./vbench_leaderboard_submission/long.csv"
INFO_DIR = "./vbench_leaderboard_submission/model_info.csv"
COLUMN_NAMES = MODEL_INFO + TASK_INFO
COLUMN_NAMES_QUALITY = MODEL_INFO_TAB_QUALITY + QUALITY_TAB
COLUMN_NAMES_I2V = MODEL_INFO_TAB_I2V + I2V_TAB
LEADERBORAD_INTRODUCTION = """# VBench Leaderboard
*"Which Video Generation Model is better?"*
π Welcome to the leaderboard of the **VBench**! π¦ *A Comprehensive Benchmark Suite for Video Generative Models* (**CVPR 2024 Spotlight**) [![Code](https://img.shields.io/github/stars/Vchitect/VBench.svg?style=social&label=Official)](https://github.com/Vchitect/VBench)
<div style="display: flex; flex-wrap: wrap; align-items: center; gap: 10px;">
<a href='https://arxiv.org/abs/2311.17982'><img src='https://img.shields.io/badge/cs.CV-Paper-b31b1b?logo=arxiv&logoColor=red'></a>
<a href='https://vchitect.github.io/VBench-project/'><img src='https://img.shields.io/badge/VBench-Website-green?logo=googlechrome&logoColor=green'></a>
<a href='https://pypi.org/project/vbench/'><img src='https://img.shields.io/pypi/v/vbench'></a>
<a href='https://www.youtube.com/watch?v=7IhCC8Qqn8Y'><img src='https://img.shields.io/badge/YouTube-Video-c4302b?logo=youtube&logoColor=red'></a>
<a href='https://hits.seeyoufarm.com'><img src='https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FVchitect%2FVBench&count_bg=%23FFA500&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=visitors&edge_flat=false'></a>
</div>
- **Comprehensive Dimensions:** We carefully decompose video generation quality into 16 comprehensive dimensions to reveal individual model's strengths and weaknesses.
- **Human Alignment:** We conducted extensive experiments and human annotations to validate robustness of VBench.
- **Valuable Insights:** VBench provides multi-perspective insights useful for the community.
**Join Leaderboard**: Please see the [instructions](https://github.com/Vchitect/VBench/tree/master?tab=readme-ov-file#trophy-leaderboard) for 3 options to participate. One option is to follow [VBench Usage info](https://github.com/Vchitect/VBench?tab=readme-ov-file#usage), and upload the generated `result.json` file here. After clicking the `Submit here!` button, click the `Refresh` button.
**Model Information**: What are the details of these Video Generation Models? See [HERE](https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)
**Credits**: This leaderboard is updated and maintained by the team of [VBench Contributors](https://github.com/Vchitect/VBench?tab=readme-ov-file#muscle-vbench-contributors).
"""
SUBMIT_INTRODUCTION = """# Submit on VBench Benchmark Introduction
## π
1. Please note that you need to obtain the file `evaluation_results/*.json` by running VBench in Github. You may conduct an [Offline Check](https://github.com/Vchitect/VBench?tab=readme-ov-file#get-final-score-and-submit-to-leaderboard) before uploading.
2. Then, pack these JSON files into a `ZIP` archive, ensuring that the top-level directory of the ZIP contains the individual JSON files.
3. Finally, upload the ZIP archive below.
β οΈ Uploading generated videos or images of the model is invalid!
β οΈ Submissions that do not correctly fill in the model name and model link may be deleted by the VBench team. The contact information you filled in will not be made public.
"""
TABLE_INTRODUCTION = """
"""
LEADERBORAD_INFO = """
VBench, a comprehensive benchmark suite for video generative models. We design a comprehensive and hierarchical Evaluation Dimension Suite to decompose "video generation quality" into multiple well-defined dimensions to facilitate fine-grained and objective evaluation. For each dimension and each content category, we carefully design a Prompt Suite as test cases, and sample Generated Videos from a set of video generation models. For each evaluation dimension, we specifically design an Evaluation Method Suite, which uses carefully crafted method or designated pipeline for automatic objective evaluation. We also conduct Human Preference Annotation for the generated videos for each dimension, and show that VBench evaluation results are well aligned with human perceptions. VBench can provide valuable insights from multiple perspectives.
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@inproceedings{huang2023vbench,
title={{VBench}: Comprehensive Benchmark Suite for Video Generative Models},
author={Huang, Ziqi and He, Yinan and Yu, Jiashuo and Zhang, Fan and Si, Chenyang and Jiang, Yuming and Zhang, Yuanhan and Wu, Tianxing and Jin, Qingyang and Chanpaisit, Nattapol and Wang, Yaohui and Chen, Xinyuan and Wang, Limin and Lin, Dahua and Qiao, Yu and Liu, Ziwei},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
year={2024}
}"""
QUALITY_CLAIM_TEXT = "We use all the videos on Sora website (https://openai.com/sora) for a preliminary evaluation, including the failure case videos Sora provided."
I2V_CLAIM_TEXT = "Since the open-sourced SVD models do not accept text input during the I2V stage, we are unable to evaluate its `camera motion` in terms of `video-text consistency`. The total score is calculated based on all dimensions except `camera motion`."
LONG_CLAIM_TEXT = ""
NORMALIZE_DIC = {
"subject consistency": {"Min": 0.1462, "Max": 1.0},
"background consistency": {"Min": 0.2615, "Max": 1.0},
"temporal flickering": {"Min": 0.6293, "Max": 1.0},
"motion smoothness": {"Min": 0.706, "Max": 0.9975},
"dynamic degree": {"Min": 0.0, "Max": 1.0},
"aesthetic quality": {"Min": 0.0, "Max": 1.0},
"imaging quality": {"Min": 0.0, "Max": 1.0},
"object class": {"Min": 0.0, "Max": 1.0},
"multiple objects": {"Min": 0.0, "Max": 1.0},
"human action": {"Min": 0.0, "Max": 1.0},
"color": {"Min": 0.0, "Max": 1.0},
"spatial relationship": {"Min": 0.0, "Max": 1.0},
"scene": {"Min": 0.0, "Max": 0.8222},
"appearance style": {"Min": 0.0009, "Max": 0.2855},
"temporal style": {"Min": 0.0, "Max": 0.364},
"overall consistency": {"Min": 0.0, "Max": 0.364}
}
NORMALIZE_DIC_I2V = {
"Video-Text Camera Motion" :{"Min": 0.0, "Max":1.0 },
"Video-Image Subject Consistency":{"Min": 0.1462, "Max": 1.0},
"Video-Image Background Consistency":{"Min": 0.2615, "Max":1.0 },
"Subject Consistency":{"Min": 0.1462, "Max": 1.0},
"Background Consistency":{"Min": 0.2615, "Max": 1.0 },
"Motion Smoothness":{"Min": 0.7060, "Max": 0.9975},
"Dynamic Degree":{"Min": 0.0, "Max": 1.0},
"Aesthetic Quality":{"Min": 0.0, "Max": 1.0},
"Imaging Quality":{"Min": 0.0, "Max": 1.0},
"Temporal Flickering":{"Min":0.6293, "Max": 1.0}
} |