ynhe commited on
Commit
446db64
1 Parent(s): 83fdf44

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -20
app.py CHANGED
@@ -122,26 +122,13 @@ def get_final_score(df, selected_columns):
122
 
123
  def get_final_score_quality(df, selected_columns):
124
  normalize_df = get_normalized_df(df)
125
- #final_score = normalize_df.drop('name', axis=1).sum(axis=1)
126
- # for name in normalize_df.drop('Model Name (clickable)', axis=1):
127
- # normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
128
- quality_score = normalize_df[QUALITY_LIST].sum(axis=1) / len(QUALITY_LIST)
129
- # quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
130
- # semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
131
- final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
132
- if 'Total Score' in df:
133
- df['Total Score'] = final_score
134
- else:
135
- df.insert(1, 'Total Score', final_score)
136
- if 'Semantic Score' in df:
137
- df['Semantic Score'] = semantic_score
138
- else:
139
- df.insert(2, 'Semantic Score', semantic_score)
140
  if 'Quality Score' in df:
141
  df['Quality Score'] = quality_score
142
  else:
143
- df.insert(3, 'Quality Score', quality_score)
144
- selected_score = calculate_selected_score(normalize_df, selected_columns)
145
  if 'Selected Score' in df:
146
  df['Selected Score'] = selected_score
147
  else:
@@ -162,8 +149,8 @@ def get_baseline_df():
162
  def get_baseline_df_quality():
163
  submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
164
  submission_repo.git_pull()
165
- df = pd.read_csv(CSV_DIR)
166
- df = get_final_score(df, checkbox_group.value)
167
  df = df.sort_values(by="Selected Score", ascending=False)
168
  present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value
169
  df = df[present_columns]
@@ -220,7 +207,7 @@ def on_filter_model_size_method_change(selected_columns):
220
  return filter_component#.value
221
 
222
  def on_filter_model_size_method_change_quality(selected_columns):
223
- updated_data = get_all_df(selected_columns)
224
  #print(updated_data)
225
  # columns:
226
  selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
 
122
 
123
  def get_final_score_quality(df, selected_columns):
124
  normalize_df = get_normalized_df(df)
125
+ quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / len(QUALITY_TAB)
126
+
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  if 'Quality Score' in df:
128
  df['Quality Score'] = quality_score
129
  else:
130
+ df.insert(1, 'Quality Score', quality_score)
131
+ selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
132
  if 'Selected Score' in df:
133
  df['Selected Score'] = selected_score
134
  else:
 
149
  def get_baseline_df_quality():
150
  submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
151
  submission_repo.git_pull()
152
+ df = pd.read_csv(QUALITY_DIR)
153
+ df = get_final_score_quality(df, checkbox_group_quality.value)
154
  df = df.sort_values(by="Selected Score", ascending=False)
155
  present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value
156
  df = df[present_columns]
 
207
  return filter_component#.value
208
 
209
  def on_filter_model_size_method_change_quality(selected_columns):
210
+ updated_data = get_baseline_df_quality()
211
  #print(updated_data)
212
  # columns:
213
  selected_columns = [item for item in QUALITY_TAB if item in selected_columns]