Spaces:
Sleeping
Sleeping
File size: 15,617 Bytes
d5d7329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
from __future__ import annotations
import json
import os
import re
import subprocess
import warnings
from itertools import groupby
from logging import getLogger
from pathlib import Path
from typing import Any, Literal, Sequence
import matplotlib
import matplotlib.pylab as plt
import numpy as np
import requests
import torch
import torch.backends.mps
import torch.nn as nn
import torchaudio
from cm_time import timer
from numpy import ndarray
from tqdm import tqdm
from transformers import HubertModel
from so_vits_svc_fork.hparams import HParams
LOG = getLogger(__name__)
HUBERT_SAMPLING_RATE = 16000
IS_COLAB = os.getenv("COLAB_RELEASE_TAG", False)
def get_optimal_device(index: int = 0) -> torch.device:
if torch.cuda.is_available():
return torch.device(f"cuda:{index % torch.cuda.device_count()}")
elif torch.backends.mps.is_available():
return torch.device("mps")
else:
try:
import torch_xla.core.xla_model as xm # noqa
if xm.xrt_world_size() > 0:
return torch.device("xla")
# return xm.xla_device()
except ImportError:
pass
return torch.device("cpu")
def download_file(
url: str,
filepath: Path | str,
chunk_size: int = 64 * 1024,
tqdm_cls: type = tqdm,
skip_if_exists: bool = False,
overwrite: bool = False,
**tqdm_kwargs: Any,
):
if skip_if_exists is True and overwrite is True:
raise ValueError("skip_if_exists and overwrite cannot be both True")
filepath = Path(filepath)
filepath.parent.mkdir(parents=True, exist_ok=True)
temppath = filepath.parent / f"{filepath.name}.download"
if filepath.exists():
if skip_if_exists:
return
elif not overwrite:
filepath.unlink()
else:
raise FileExistsError(f"{filepath} already exists")
temppath.unlink(missing_ok=True)
resp = requests.get(url, stream=True)
total = int(resp.headers.get("content-length", 0))
kwargs = dict(
total=total,
unit="iB",
unit_scale=True,
unit_divisor=1024,
desc=f"Downloading {filepath.name}",
)
kwargs.update(tqdm_kwargs)
with temppath.open("wb") as f, tqdm_cls(**kwargs) as pbar:
for data in resp.iter_content(chunk_size=chunk_size):
size = f.write(data)
pbar.update(size)
temppath.rename(filepath)
PRETRAINED_MODEL_URLS = {
"hifi-gan": [
[
"https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/D_0.pth",
"https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/G_0.pth",
],
[
"https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/D_0.pth",
"https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/G_0.pth",
],
],
"contentvec": [
[
"https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/checkpoint_best_legacy_500.pt"
],
[
"https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/checkpoint_best_legacy_500.pt"
],
[
"http://obs.cstcloud.cn/share/obs/sankagenkeshi/checkpoint_best_legacy_500.pt"
],
],
}
from joblib import Parallel, delayed
def ensure_pretrained_model(
folder_path: Path | str, type_: str | dict[str, str], **tqdm_kwargs: Any
) -> tuple[Path, ...] | None:
folder_path = Path(folder_path)
# new code
if not isinstance(type_, str):
try:
Parallel(n_jobs=len(type_))(
[
delayed(download_file)(
url,
folder_path / filename,
position=i,
skip_if_exists=True,
**tqdm_kwargs,
)
for i, (filename, url) in enumerate(type_.items())
]
)
return tuple(folder_path / filename for filename in type_.values())
except Exception as e:
LOG.error(f"Failed to download {type_}")
LOG.exception(e)
# old code
models_candidates = PRETRAINED_MODEL_URLS.get(type_, None)
if models_candidates is None:
LOG.warning(f"Unknown pretrained model type: {type_}")
return
for model_urls in models_candidates:
paths = [folder_path / model_url.split("/")[-1] for model_url in model_urls]
try:
Parallel(n_jobs=len(paths))(
[
delayed(download_file)(
url, path, position=i, skip_if_exists=True, **tqdm_kwargs
)
for i, (url, path) in enumerate(zip(model_urls, paths))
]
)
return tuple(paths)
except Exception as e:
LOG.error(f"Failed to download {model_urls}")
LOG.exception(e)
class HubertModelWithFinalProj(HubertModel):
def __init__(self, config):
super().__init__(config)
# The final projection layer is only used for backward compatibility.
# Following https://github.com/auspicious3000/contentvec/issues/6
# Remove this layer is necessary to achieve the desired outcome.
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
def remove_weight_norm_if_exists(module, name: str = "weight"):
r"""Removes the weight normalization reparameterization from a module.
Args:
module (Module): containing module
name (str, optional): name of weight parameter
Example:
>>> m = weight_norm(nn.Linear(20, 40))
>>> remove_weight_norm(m)
"""
from torch.nn.utils.weight_norm import WeightNorm
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, WeightNorm) and hook.name == name:
hook.remove(module)
del module._forward_pre_hooks[k]
return module
def get_hubert_model(
device: str | torch.device, final_proj: bool = True
) -> HubertModel:
if final_proj:
model = HubertModelWithFinalProj.from_pretrained("lengyue233/content-vec-best")
else:
model = HubertModel.from_pretrained("lengyue233/content-vec-best")
# Hubert is always used in inference mode, we can safely remove weight-norms
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.Conv1d)):
remove_weight_norm_if_exists(m)
return model.to(device)
def get_content(
cmodel: HubertModel,
audio: torch.Tensor | ndarray[Any, Any],
device: torch.device | str,
sr: int,
legacy_final_proj: bool = False,
) -> torch.Tensor:
audio = torch.as_tensor(audio)
if sr != HUBERT_SAMPLING_RATE:
audio = (
torchaudio.transforms.Resample(sr, HUBERT_SAMPLING_RATE)
.to(audio.device)(audio)
.to(device)
)
if audio.ndim == 1:
audio = audio.unsqueeze(0)
with torch.no_grad(), timer() as t:
if legacy_final_proj:
warnings.warn("legacy_final_proj is deprecated")
if not hasattr(cmodel, "final_proj"):
raise ValueError("HubertModel does not have final_proj")
c = cmodel(audio, output_hidden_states=True)["hidden_states"][9]
c = cmodel.final_proj(c)
else:
c = cmodel(audio)["last_hidden_state"]
c = c.transpose(1, 2)
wav_len = audio.shape[-1] / HUBERT_SAMPLING_RATE
LOG.info(
f"HuBERT inference time : {t.elapsed:.3f}s, RTF: {t.elapsed / wav_len:.3f}"
)
return c
def _substitute_if_same_shape(to_: dict[str, Any], from_: dict[str, Any]) -> None:
not_in_to = list(filter(lambda x: x not in to_, from_.keys()))
not_in_from = list(filter(lambda x: x not in from_, to_.keys()))
if not_in_to:
warnings.warn(f"Keys not found in model state dict:" f"{not_in_to}")
if not_in_from:
warnings.warn(f"Keys not found in checkpoint state dict:" f"{not_in_from}")
shape_missmatch = []
for k, v in from_.items():
if k not in to_:
pass
elif hasattr(v, "shape"):
if not hasattr(to_[k], "shape"):
raise ValueError(f"Key {k} is not a tensor")
if to_[k].shape == v.shape:
to_[k] = v
else:
shape_missmatch.append((k, to_[k].shape, v.shape))
elif isinstance(v, dict):
assert isinstance(to_[k], dict)
_substitute_if_same_shape(to_[k], v)
else:
to_[k] = v
if shape_missmatch:
warnings.warn(
f"Shape mismatch: {[f'{k}: {v1} -> {v2}' for k, v1, v2 in shape_missmatch]}"
)
def safe_load(model: torch.nn.Module, state_dict: dict[str, Any]) -> None:
model_state_dict = model.state_dict()
_substitute_if_same_shape(model_state_dict, state_dict)
model.load_state_dict(model_state_dict)
def load_checkpoint(
checkpoint_path: Path | str,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer | None = None,
skip_optimizer: bool = False,
) -> tuple[torch.nn.Module, torch.optim.Optimizer | None, float, int]:
if not Path(checkpoint_path).is_file():
raise FileNotFoundError(f"File {checkpoint_path} not found")
with Path(checkpoint_path).open("rb") as f:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", category=UserWarning, message="TypedStorage is deprecated"
)
checkpoint_dict = torch.load(f, map_location="cpu", weights_only=True)
iteration = checkpoint_dict["iteration"]
learning_rate = checkpoint_dict["learning_rate"]
# safe load module
if hasattr(model, "module"):
safe_load(model.module, checkpoint_dict["model"])
else:
safe_load(model, checkpoint_dict["model"])
# safe load optim
if (
optimizer is not None
and not skip_optimizer
and checkpoint_dict["optimizer"] is not None
):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
safe_load(optimizer, checkpoint_dict["optimizer"])
LOG.info(f"Loaded checkpoint '{checkpoint_path}' (epoch {iteration})")
return model, optimizer, learning_rate, iteration
def save_checkpoint(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
learning_rate: float,
iteration: int,
checkpoint_path: Path | str,
) -> None:
LOG.info(
"Saving model and optimizer state at epoch {} to {}".format(
iteration, checkpoint_path
)
)
if hasattr(model, "module"):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
with Path(checkpoint_path).open("wb") as f:
torch.save(
{
"model": state_dict,
"iteration": iteration,
"optimizer": optimizer.state_dict(),
"learning_rate": learning_rate,
},
f,
)
def clean_checkpoints(
path_to_models: Path | str, n_ckpts_to_keep: int = 2, sort_by_time: bool = True
) -> None:
"""Freeing up space by deleting saved ckpts
Arguments:
path_to_models -- Path to the model directory
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
sort_by_time -- True -> chronologically delete ckpts
False -> lexicographically delete ckpts
"""
LOG.info("Cleaning old checkpoints...")
path_to_models = Path(path_to_models)
# Define sort key functions
name_key = lambda p: int(re.match(r"[GD]_(\d+)", p.stem).group(1))
time_key = lambda p: p.stat().st_mtime
path_key = lambda p: (p.stem[0], time_key(p) if sort_by_time else name_key(p))
models = list(
filter(
lambda p: (
p.is_file()
and re.match(r"[GD]_\d+", p.stem)
and not p.stem.endswith("_0")
),
path_to_models.glob("*.pth"),
)
)
models_sorted = sorted(models, key=path_key)
models_sorted_grouped = groupby(models_sorted, lambda p: p.stem[0])
for group_name, group_items in models_sorted_grouped:
to_delete_list = list(group_items)[:-n_ckpts_to_keep]
for to_delete in to_delete_list:
if to_delete.exists():
LOG.info(f"Removing {to_delete}")
if IS_COLAB:
to_delete.write_text("")
to_delete.unlink()
def latest_checkpoint_path(dir_path: Path | str, regex: str = "G_*.pth") -> Path | None:
dir_path = Path(dir_path)
name_key = lambda p: int(re.match(r"._(\d+)\.pth", p.name).group(1))
paths = list(sorted(dir_path.glob(regex), key=name_key))
if len(paths) == 0:
return None
return paths[-1]
def plot_spectrogram_to_numpy(spectrogram: ndarray) -> ndarray:
matplotlib.use("Agg")
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def get_backup_hparams(
config_path: Path, model_path: Path, init: bool = True
) -> HParams:
model_path.mkdir(parents=True, exist_ok=True)
config_save_path = model_path / "config.json"
if init:
with config_path.open() as f:
data = f.read()
with config_save_path.open("w") as f:
f.write(data)
else:
with config_save_path.open() as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_path.as_posix()
return hparams
def get_hparams(config_path: Path | str) -> HParams:
config = json.loads(Path(config_path).read_text("utf-8"))
hparams = HParams(**config)
return hparams
def repeat_expand_2d(content: torch.Tensor, target_len: int) -> torch.Tensor:
# content : [h, t]
src_len = content.shape[-1]
if target_len < src_len:
return content[:, :target_len]
else:
return torch.nn.functional.interpolate(
content.unsqueeze(0), size=target_len, mode="nearest"
).squeeze(0)
def plot_data_to_numpy(x: ndarray, y: ndarray) -> ndarray:
matplotlib.use("Agg")
fig, ax = plt.subplots(figsize=(10, 2))
plt.plot(x)
plt.plot(y)
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def get_gpu_memory(type_: Literal["total", "free", "used"]) -> Sequence[int] | None:
command = f"nvidia-smi --query-gpu=memory.{type_} --format=csv"
try:
memory_free_info = (
subprocess.check_output(command.split())
.decode("ascii")
.split("\n")[:-1][1:]
)
memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
return memory_free_values
except Exception:
return
def get_total_gpu_memory(type_: Literal["total", "free", "used"]) -> int | None:
memories = get_gpu_memory(type_)
if memories is None:
return
return sum(memories)
|