File size: 6,910 Bytes
43a369c
 
 
 
 
 
 
 
 
 
b03b419
 
 
43a369c
 
adf34e4
43a369c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a369c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03b419
adf34e4
b03b419
43a369c
 
 
 
adf34e4
43a369c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f72f6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a369c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03b419
43a369c
b03b419
 
43a369c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
from paths import *
import numpy as np
from vision_tower import DINOv2_MLP
from transformers import AutoImageProcessor
import torch
import os
import matplotlib.pyplot as plt
import io
from PIL import Image
import rembg
from typing import Any


from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="Viglong/OriNet", filename="celarge/dino_weight.pt", repo_type="model", cache_dir='./', resume_download=True)
print(ckpt_path)

save_path = './'
device = 'cpu'
dino = DINOv2_MLP(
                    dino_mode   = 'large',
                    in_dim      = 1024,
                    out_dim     = 360+180+60+2,
                    evaluate    = True,
                    mask_dino   = False,
                    frozen_back = False
                ).to(device)

dino.eval()
print('model create')
dino.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
print('weight loaded')
val_preprocess   = AutoImageProcessor.from_pretrained(DINO_LARGE, cache_dir='./')

def background_preprocess(input_image, do_remove_background):

    rembg_session = rembg.new_session() if do_remove_background else None

    if do_remove_background:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)

    return input_image

def resize_foreground(
    image: Image,
    ratio: float,
) -> Image:
    image = np.array(image)
    assert image.shape[-1] == 4
    alpha = np.where(image[..., 3] > 0)
    y1, y2, x1, x2 = (
        alpha[0].min(),
        alpha[0].max(),
        alpha[1].min(),
        alpha[1].max(),
    )
    # crop the foreground
    fg = image[y1:y2, x1:x2]
    # pad to square
    size = max(fg.shape[0], fg.shape[1])
    ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
    ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
    new_image = np.pad(
        fg,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )

    # compute padding according to the ratio
    new_size = int(new_image.shape[0] / ratio)
    # pad to size, double side
    ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
    ph1, pw1 = new_size - size - ph0, new_size - size - pw0
    new_image = np.pad(
        new_image,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )
    new_image = Image.fromarray(new_image)
    return new_image

def remove_background(image: Image,
    rembg_session: Any = None,
    force: bool = False,
    **rembg_kwargs,
) -> Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image

def get_3angle(image):
    
    # image = Image.open(image_path).convert('RGB')
    image_inputs = val_preprocess(images = image)
    image_inputs['pixel_values'] = torch.from_numpy(np.array(image_inputs['pixel_values'])).to(device)
    with torch.no_grad():
        dino_pred = dino(image_inputs)

    gaus_ax_pred   = torch.argmax(dino_pred[:, 0:360], dim=-1)
    gaus_pl_pred   = torch.argmax(dino_pred[:, 360:360+180], dim=-1)
    gaus_ro_pred   = torch.argmax(dino_pred[:, 360+180:360+180+60], dim=-1)
    angles = torch.zeros(3)
    angles[0]  = gaus_ax_pred
    angles[1]  = gaus_pl_pred - 90
    angles[2]  = gaus_ro_pred - 30
    
    return angles

def scale(x):
    # print(x)
    # if abs(x[0])<0.1 and abs(x[1])<0.1:
        
    #     return x*5
    # else:
    #     return x
    return x*3
    
def get_proj2D_XYZ(phi, theta, gamma):
    x = np.array([-1*np.sin(phi)*np.cos(gamma) - np.cos(phi)*np.sin(theta)*np.sin(gamma), np.sin(phi)*np.sin(gamma) - np.cos(phi)*np.sin(theta)*np.cos(gamma)])
    y = np.array([-1*np.cos(phi)*np.cos(gamma) + np.sin(phi)*np.sin(theta)*np.sin(gamma), np.cos(phi)*np.sin(gamma) + np.sin(phi)*np.sin(theta)*np.cos(gamma)])
    z = np.array([np.cos(theta)*np.sin(gamma), np.cos(theta)*np.cos(gamma)])
    x = scale(x)
    y = scale(y)
    z = scale(z)
    return x, y, z

# 绘制3D坐标轴
def draw_axis(ax, origin, vector, color, label=None):
    ax.quiver(origin[0], origin[1], vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color=color)
    if label!=None:
        ax.text(origin[0] + vector[0] * 1.1, origin[1] + vector[1] * 1.1, label, color=color, fontsize=12)

def figure_to_img(fig):
    with io.BytesIO() as buf:
        fig.savefig(buf, format='JPG', bbox_inches='tight')
        buf.seek(0)
        image = Image.open(buf).copy()
    return image

def infer_func(img, do_rm_bkg):
    img = Image.fromarray(img)
    img = background_preprocess(img, do_rm_bkg)
    angles = get_3angle(img)
    
    fig, ax = plt.subplots(figsize=(8, 8))

    w, h = img.size
    if h>w:
        extent = [-5*w/h, 5*w/h, -5, 5]
    else:
        extent = [-5, 5, -5*h/w, 5*h/w]
    ax.imshow(img, extent=extent, zorder=0, aspect ='auto')  # extent 设置图片的显示范围

    origin = np.array([0, 0])

    # # 设置旋转角度
    phi   = np.radians(angles[0])
    theta = np.radians(angles[1])
    gamma = np.radians(-1*angles[2])

    # 旋转后的向量
    rot_x, rot_y, rot_z = get_proj2D_XYZ(phi, theta, gamma)

    # draw arrow
    arrow_attr = [{'point':rot_x, 'color':'r', 'label':'front'}, 
                  {'point':rot_y, 'color':'g', 'label':'right'}, 
                  {'point':rot_z, 'color':'b', 'label':'top'}]
    
    if phi> 45 and phi<=225:
        order = [0,1,2]
    elif phi > 225 and phi < 315:
        order = [2,0,1]
    else:
        order = [2,1,0]
    
    for i in range(3):
        draw_axis(ax, origin, arrow_attr[order[i]]['point'], arrow_attr[order[i]]['color'], arrow_attr[order[i]]['label'])
        # draw_axis(ax, origin, rot_y, 'g', label='right')
        # draw_axis(ax, origin, rot_z, 'b', label='top')
        # draw_axis(ax, origin, rot_x, 'r', label='front')

    # 关闭坐标轴和网格
    ax.set_axis_off()
    ax.grid(False)

    # 设置坐标范围
    ax.set_xlim(-5, 5)
    ax.set_ylim(-5, 5)
    
    res_img = figure_to_img(fig)
    # axis_model = "axis.obj"
    return [res_img, float(angles[0]), float(angles[1]), float(angles[2])]

server = gr.Interface(
    flagging_mode='never',
    fn=infer_func, 
    inputs=[
        gr.Image(height=512, width=512, label="upload your image"),
        gr.Checkbox(label="Remove Background", value=True)
    ], 
    outputs=[
        gr.Image(height=512, width=512, label="result image"),
        # gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0],  label="3D Model"),
        gr.Textbox(lines=1, label='Azimuth(0~360°)'),
        gr.Textbox(lines=1, label='Polar(-90~90°)'),
        gr.Textbox(lines=1, label='Rotation(-90~90°)')
    ]
)

server.launch()